浏览全部资源
扫码关注微信
1.四川大学 电子信息学院,四川 成都 610065
2.空天飞行空气动力科学与技术全国重点实验室,四川 绵阳 621000
李少壮(1999—),男,硕士生.研究方向:超声测温.E-mail:13986948428@163.com
石友安, E-mail: youanshi11@sina.com
收稿日期:2024-04-14,
网络出版日期:2025-03-20,
移动端阅览
李少壮,石友安,陆小康等.分布式超声波探测二维气体温度场方法研究[J].工程科学与技术,
LI Shaozhuang,SHI Youan,LU Xiaokang,et al.Study on Distributed Ultrasonic Detection Method of Two-Dimensional Gas Temperature Field[J].Advanced Engineering Sciences,XXXX,XX(XX):1‒8.
李少壮,石友安,陆小康等.分布式超声波探测二维气体温度场方法研究[J].工程科学与技术, DOI:10.12454/j.jsuese.202400259.
LI Shaozhuang,SHI Youan,LU Xiaokang,et al.Study on Distributed Ultrasonic Detection Method of Two-Dimensional Gas Temperature Field[J].Advanced Engineering Sciences,XXXX,XX(XX):1‒8. DOI: 10.12454/j.jsuese.202400259.
在现有的热压罐中主要使用若干温度传感器来实现复材构件成型温度控制,这种点测的方式难以实现空间温度场的测量,同时这种接触式测温方式会直接影响模具和构件接触面温度分布。这些局限性大大影响了构件成型的品质,准确测量大型空间构件成型气体温度场成为航空复合材料部件成型固化亟需解决的难题。为此,本文开展了分布式超声波探测二维气体温度场方法研究。首先通过数值仿真的手段进行了热压罐中的超声传播特性分析研究,并在此基础上依据时移特性建立了分布式超声气体测温模型;从热压罐实际工况出发,发展了基于全局径向基函数LQ和奇异值分解SVD的二维气体温度场重建算法,并通过和其它几个常见温度场重建算法作对比以及带噪重建的方式进行了该算法的考核与精度分析。数值模拟和热压罐现场实验验证表明:当温度场发生变化时,超声在热压罐中的传播会出现明显的时移特性;以该时移特性建立的测温模型可以有效描述温度分布变化与超声传播时间的关系;LQ-SVD重建算法在热压罐工况下具有较高精度和抗噪性,在数值模拟中该算法抗噪性较强且和其它算法相比具有更低的重建均方根误差,在实验验证中重建值和真值吻合较好;本文建立的分布式超声波探测二维气体温度场方法可以较为准确的测量出大型空间二维气体温度场,方法有效。
Zhou Yixing , Xiang Baolin , Yuan Zhe , et al . Technology Innovation and Application , 2023 , 13 ( 11 ): 177 - 180 .
周益星 , 向宝林 , 袁喆 , 等 . 复合材料热压罐固化参数在线检测技术研究 [J ] . 科技创新与应用 , 2023 , 13 ( 11 ): 177 - 180 . DOI: 10.19981/j.CN23-1581/G3.2023.11.043 http://dx.doi.org/10.19981/j.CN23-1581/G3.2023.11.043
Haskilic V , Ulucan A , Atici K B , et al . A real-world case of autoclave loading and scheduling problems in aerospace composite material production [J ] . Omega , 2023 , 120 : 102918 . DOI: 10.1016/j.omega.2023.102918 http://dx.doi.org/10.1016/j.omega.2023.102918
Wang Yucheng , Tao Fei , Zuo Ying , et al . Digital-twin-enhanced quality prediction for the composite materials [J ] . Engineering , 2023 , 22 : 23 - 33 . DOI: 10.1016/j.eng.2022.08.019 http://dx.doi.org/10.1016/j.eng.2022.08.019
Guo Yonggang . Study on numerical simulation of hot-fluid-solid multi-physical field in autoclave forming process [D ] . Tianjin : Civil Aviation University of China , 2022 .
DOI: 10.27627/d.cnki.gzmhy.2022.000485[ 郭永刚 . 热压罐成型工艺的热流固多物理场数值模拟研究 [D ] . 天津 : 中国民航大学 , 2022 . ]
Zhang Cheng . Trade-off design of process temperature field of large composite structure autoclave [D ] . Harbin : Harbin Institute of Technology , 2009 .
张铖 . 大型复合材料结构热压罐工艺温度场权衡设计 [D ] . 哈尔滨 : 哈尔滨工业大学 , 2009 .
Lin Jiaguan , Yang Rui , Wang Tingxia , et al . Large-scale composite curing temperature analysis and improvement in autoclave process [J ] . Composites Science and Engineering , 2015 ( 5 ): 61 - 65 .
林家冠 , 杨睿 , 王廷霞 , 等 . 大型复合材料构件热压罐成型温度分析与均匀性改善研究 [J ] . 玻璃钢/复合材料 , 2015 ( 5 ): 61 - 65 .
Lin Jiaguan . Temperature field analysis and control of curing of composite components in autoclave [D ] . Dalian : Dalian University of Technology , 2015 .
林家冠 . 复合材料构件热压罐固化的温度场分析与调控 [D ] . 大连 : 大连理工大学 , 2015 .
He Jun , Cao Meng , Cong Fanglin , et al . Research on forming process of aviation composite material based on finite element simulation [J ] . IOP Conference Series:Earth and Environmental Science , 2021 , 696 ( 1 ): 012015 . DOI: 10.1088/1755-1315/696/1/012015 http://dx.doi.org/10.1088/1755-1315/696/1/012015
Wu Jingwen , Gu Shanlin , Xiong Junfeng , et al . Research on calibration method of autoclave temperature monitoring system based on cluster type compensating wire [J ] . Metrology & Measurement Technique , 2022 , 49 ( 4 ): 32 - 35 .
吴静文 , 谷山林 , 熊军锋 , 等 . 基于集束型补偿导线的热压罐温度监控系统校准方法的研究 [J ] . 计量与测试技术 , 2022 , 49 ( 4 ): 32 - 35 . DOI: 10.15988/j.cnki.1004-6941.2022.4.011 http://dx.doi.org/10.15988/j.cnki.1004-6941.2022.4.011
Ma Zhou , Ma Wei , Du Pengfei , et al . Arrangement of sensors for measuring temperature in the test of autoclave [M ] // Proceedings of the International Conference on Aerospace System Science and Engineering 2022 . Singapore : Springer Nature Singapore , 2023 : 191 - 201 . DOI: 10.1007/978-981-99-0651-2_15 http://dx.doi.org/10.1007/978-981-99-0651-2_15
Sun Yi . Summary of non-contact temperature measurement technology on solid surface [J ] . Science and Technology & Innovation , 2024 ( 2 ): 73 - 76 .
孙熠 . 固体表面非接触测温技术综述 [J ] . 科技与创新 , 2024 ( 2 ): 73 - 76 . DOI: 10.15913/j.cnki.kjycx.2024.02.020 http://dx.doi.org/10.15913/j.cnki.kjycx.2024.02.020
Wei Dong , Yang Xiaofeng , Shi Youan , et al . A method for reconstructing two-dimensional surface and internal temperature distributions in structures by ultrasonic measurements [J ] . Renewable Energy , 2020 , 150 : 1108 - 1117 . DOI: 10.1016/j.renene.2019.10.081 http://dx.doi.org/10.1016/j.renene.2019.10.081
Liu Qi , Zhou Bin , Zhang Jianyong , et al . A novel time-of-flight estimation method of acoustic signals for temperature and velocity measurement of gas medium [J ] . Experimental Thermal and Fluid Science , 2023 , 140 : 110759 . DOI: 10.1016/j.expthermflusci.2022.110759 http://dx.doi.org/10.1016/j.expthermflusci.2022.110759
Barathula S , Chaitanya S K , Alapati J K K , et al . Precise temperature reconstruction in acoustic pyrometry:Impact of domain discretization and transceiver count [J ] . Applied Thermal Engineering , 2024 , 238 : 122009 . DOI: 10.1016/j.applthermaleng.2023.122009 http://dx.doi.org/10.1016/j.applthermaleng.2023.122009
Ren Siyuan . Reconstruction and experimental study of TSR algorithm for gas temperature field by ultrasonic method [D ] . Beijing : North China Electric Power University , 2015 .
任思源 . 超声法气体温度场的TSR算法重建及实验研究 [D ] . 北京 : 华北电力大学 , 2015 .
Yao Ming lin , Guan Yu jun , Dong Cui ying . Design of ultrasonic gas temperature measurement system with humidity self-correction [J ] . Advanced Materials Research , 2011 ,383/384/385/386/387/388/ 389 / 390 : 5166 - 5170 . DOI: 10.4028/www.scientific.net/amr.383-390.5166 http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.5166
Luo Xiaoyu , Liu Piliang , Cui Guimei , et al . Research on reconstruction algorithm of blast furnace throat temperature field [C ] // Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering . Xiamen China . ACM , 2022 :10.1145/3573428.3573761. DOI: 10.1145/3573428.3573761 http://dx.doi.org/10.1145/3573428.3573761
SHENG X , FANG J , ZHANG X , 等 . Research on Temperature Field Detection Method of Ultrasonic Array Reconstruction Transformer Based on Inverse Multiquadratic Function [C/OL ] // 2023 IEEE 5th International Conference on Power, Intelligent Computing and Systems (ICPICS) . 2023 : 808 - 813 [2024-04-14] . https://ieeexplore.ieee.org/document/10235700 https://ieeexplore.ieee.org/document/10235700 . DOI: 10.1109/ICPICS58376.2023.10235700 http://dx.doi.org/10.1109/ICPICS58376.2023.10235700 .
Wang Hailin , Zhou Xinzhi , Yang Qingfeng , et al . A reconstruction method of boiler furnace temperature distribution based on acoustic measurement [J ] . IEEE Transactions on Instrumentation and Measurement , 2021 , 70 : 1 - 13 . DOI: 10.1109/tim.2021.3108225 http://dx.doi.org/10.1109/tim.2021.3108225
Huang Yizhou , Chen Xufei , Badescu E , et al . Adaptive higher-order singular value decomposition clutter filter for ultrafast Doppler imaging of coronary flow under non-negligible tissue motion [J ] . Ultrasonics , 2024 , 140 : 107307 . DOI: 10.1016/j.ultras.2024.107307 http://dx.doi.org/10.1016/j.ultras.2024.107307
Wen Dong , Jiao Wenlong , Li Xiaoling , et al . The EEG signals steganography based on wavelet packet transform-singular value decomposition-logistic [J ] . Information Sciences , 2024 , 679 : 121006 . DOI: 10.1016/j.ins.2024.121006 http://dx.doi.org/10.1016/j.ins.2024.121006
Jia Ruixi , Xiong Qingyu , Xu Guangyu , et al . A method for two-dimensional temperature field distribution reconstruction [J ] . Applied Thermal Engineering , 2017 , 111 : 961 - 967 . DOI: 10.1016/j.applthermaleng.2016.09.174 http://dx.doi.org/10.1016/j.applthermaleng.2016.09.174
Huang Qunxing , Liu Dong , Wang Fei , et al . Study on three-dimensional flame temperature distribution reconstruction based on truncated singular value decomposition [J ] . Acta Physica Sinica , 2007 , 56 ( 11 ): 6742 . DOI: 10.7498/aps.56.6742 http://dx.doi.org/10.7498/aps.56.6742
Jia Ruixi , Xiong Qingyu , Wang Kai , et al . The study of three-dimensional temperature field distribution reconstruction using ultrasonic thermometry [J ] . AIP Advances , 2016 , 6 ( 7 ): 075007 . DOI: 10.1063/1.4958922 http://dx.doi.org/10.1063/1.4958922
Shen Xuehua , Xiong Qingyu , Shi Xin , et al . Ultrasonic temperature distribution reconstruction for circular area based on Markov radial basis approximation and singular value decomposition [J ] . Ultrasonics , 2015 , 62 : 174 - 185 . DOI: 10.1016/j.ultras.2015.05.014 http://dx.doi.org/10.1016/j.ultras.2015.05.014
Shen Xuehua , Xiong Qingyu , Shi Weiren , et al . Temperature distribution monitoring using ultrasonic thermometry based on Markov radial basis function approximation and singular values decomposition [J ] . Mathematical Problems in Engineering , 2014 , 2014 ( 1 ): 835619 . DOI: 10.1155/2014/835619 http://dx.doi.org/10.1155/2014/835619
MA T , LIU Y , CAO C , 等 . 3D reconstruction of temperature field using Gaussian Radial Basis Functions (GRBF) [C/OL ] // 2015 IEEE International Conference on Information and Automation . 2015 : 2246 - 2251 [2024-07-09] . https://ieeexplore.ieee.org/document/7279660 https://ieeexplore.ieee.org/document/7279660 . DOI: 10.1109/ICInfA.2015.7279660 http://dx.doi.org/10.1109/ICInfA.2015.7279660 .
Ma Tong , Liu Yuqian , Cao Chengyu . Neural networks for 3D temperature field reconstruction via acoustic signals [J ] . Mechanical Systems and Signal Processing , 2019 , 126 : 392 - 406 . DOI: 10.1016/j.ymssp.2019.02.037 http://dx.doi.org/10.1016/j.ymssp.2019.02.037
Sun Jian , Wang Ling , Gong Dianxuan . An adaptive selection method for shape parameters in MQ-RBF interpolation for two-dimensional scattered data and its application to integral equation solving [J ] . Fractal and Fractional , 2023 , 7 ( 6 ): 448 . DOI: 10.3390/fractalfract7060448 http://dx.doi.org/10.3390/fractalfract7060448
Paul A , Bhattacharya P , Biswas P , et al . Comparative analysis of image deblurring with radial basis functions in artificial neural network [M ] // Computational Vision and Robotics . New Delhi : Springer India , 2015 : 135 - 143 . DOI: 10.1007/978-81-322-2196-8_16 http://dx.doi.org/10.1007/978-81-322-2196-8_16
Objective In the current autoclave systems , several temperature sensors are primarily used to control the forming temperature of composite components . This point-measurement method makes it difficult to measure the spatial temperature field . Additionally , this contact-based temperature measurement approach directly affects the temperature distribution at the interface between the mold and the components. These limitations significantly impact the quality of component formation. Accurately measuring the gas temperature field in the forming of large-scale s patial components has become a pressing challenge in the curing process of aerospace composite material parts. Therefore, this study explores a method for distributed ultrasonic detection of the two-dimensional gas temperature field.
Methods This study first employs numerical simulation software to analyze the ultrasonic propagation characteristics in an autoclave under steady-state temperature field conditions , from the perspective of thermo-acoustic coupling . Subsequently, the analysis is extended to ultrasonic propagation characteristics under varying temperature fields . Based on these analyses , a distributed ultrasonic gas temperature measurement model is established using time-of-flight characteristics.To address issues associated with inverse problems, such as the limitations of least squares and algebraic iterative methods—where the number of discrete points cannot exceed the number of propagation paths and temperature resolution is low—a two-dimensional temperature field reconstruction algorithm based on logarithmic-quadratic (LQ) functions and singular value decomposition (SVD) is developed for autoclave conditions. The core idea of this algorithm is to first fit the distribution of the reciprocal of sound speed using a linear combination of LQ functions to establish an inversion model. Then, SVD is used to address the ill-posedness in the inversion process, enabling the solution of the model.The accuracy of the LQ-SVD algorithm is then analyzed by evaluating the maximum absolute error, mean error, and root mean square error between the reconstructed temperature field and the original temperature field, and the results are compared with those of three other common algorithms. To account for practical errors, white noise is added to the theoretical true values to simulate system errors, and the noi se resistance of the algorithm is tested based on this.Finally, a distributed ultrasonic temperature measurement system is set up in the autoclave for experimental validation. Several thermocouples are used to measure the true temperature field, and the reconstruction error between the experimental system's reconstructed values and the true values is analyzed to verify the effectiveness of the proposed method.
Results and Discussions In the propagation of ultrasound within the gas space of an autoclave , besides the primary longitudinal wave pulses , multiple reflection waves and wave interferences exist , resulting in complex propagation behaviors . Additionally, due to different temperature distributions, the propagation time of ultrasound along its path varies . In this study, the "time-of-flight characteristics" are at the microsecond level, influenced by factors such as medium properties, temperature fields, and the propagation distance of ultrasound.The LQ-SVD algorithm demonstrates the following reconstruction metrics for different types of temperature fields : for a single-peak symmetric temperature field, the maximum absolute error, errormean, and root mean square error are 0.8123 K, 0.1611K, and 0.0574%, respectively; for a single-peak biased temperature field, these metrics are 0.0431 K, 0.0087K, and 0.0026%; for a double-peak biased temperature field, they are 9.9829K, 0.8283K, and 0.3175%; for a triple-peak biased temperature field, they are 16.3017K, 2.1250K, and 0.6516%; and for a quadruple-peak biased temperature field, they are 95.1638K, 11.1843K, and 3.8784%. Based on root mean square error, the temperature field reconstruction errors for the Multi-Quadratic (MQ), Markov radial basis function (MK), and Gaussian function-based (GS) algorithms for s ingle-peak symmetric temperature fields are 0.0583%, 1.2490%, and 0.5291%, respectively; for single-peak biased temperature fields, these errors are 0.2030%, 0.5017%, and 0.0494%; for double-peak biased temperature fields, they are 0.5887%, 1.2208%, and 1.8002%; for triple-peak biased temperature fields, they are 1.2387%, 1.8017%, and 3.6965%; and for quadruple-peak biased temperature fields, they are 3.8843%, 3.9644%, and 10.7357%. These results indicate that regardless of the temperature field model, the LQ-SVD algorithm consistently achieves the best reconstruction performance.In the noise resistance test of the LQ-SVD algorithm, with a noise standard deviation of 0.5 us, the three reconstruction metrics for single-peak symmetric temperature fields are 22.4090 K, 3.9659K, and 1.3386%; for single-peak biased temperature fields, they are 21.1747K, 3.5079K, and 1.0903%; for double-peak biased temperature fields, they are 20.7577K, 3.4176K, and 1.0510%; for triple-peak biased temperature fields, they are 25.5889K, 4.6634K, and 1.3835%; and for quadruple-peak biased temperature fields, they are 85.4804K, 11.7046K, and 3.9158%. With a noise standard deviation of 1 us, these metrics for single-peak symmetric temperature fields are 36.5781 K, 5.7792K, and 1.9563%; for single-peak biased temperature fields, they are 46.6511K, 7.2609K, and 2.5816%; for double-peak biased temperature fields, they are 67.9445K, 8.3718K, and 2.6470%; for triple-peak biased temperature fields, they are 59.3418K, 7.2211K, and 2.3339%; and for quadruple-peak biased temperature fields, they are 90.7384K, 14.3979K, and 4.4350%. In the on-site experimental validation within the autoclave, the average relative error between reconstructed temperatures and thermocouple measurements is 4.48%, indicating effective performance of the distributed ultrasound temperature measurement system in temperature field reconstruction.
Conclusions The results demonstrate that the method established in this study for distributed ultrasound detection of two-dimensional gas temperature fields can precisely describe the propagation characteristics of ultrasound under thermal/acoustic coupling effects within the autoclave . This method can accurately reconstruct the temperature field distribution in the autoclave space . Its effectiveness significantly alleviates the current limitation of using only a few sensor points to measure temperature in autoclaves. It preliminarily meets the need for accurately measuring the temperature field of forming gas in large spatial components during the molding and curing of aerospace composite material parts , providing robust support for improving the quality of component formation in the future.
0
浏览量
0
下载量
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构