###
工程科学与技术:2022,54(5):1-11
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
大规模可再生能源电解水制氢合成氨关键技术与应用研究进展
(1.四川大学 化学工程学院,四川 成都 610065;2.四川大学 电气工程学院,四川 成都 610065;3.四川大学 轻工科学与工程学院,四川 成都 610065)
Research Review of the Key Technology and Application of Large-scale Water Electrolysis Powered by Renewable Energy to Hydrogen and Ammonia Production
(1.School of Chemical Eng., Sichuan Univ., Chengdu 610065, China;2.College of Electrical Eng., Sichuan Univ., Chengdu 610065, China;3.College of Biomass Sci. and Eng., Sichuan Univ., Chengdu 610065, China)
摘要
图/表
参考文献
相似文献
附件
本文已被:浏览 3064次   下载 3063
投稿时间:2022-06-28    修订日期:2022-08-17
中文摘要: 新能源的快速发展为电力和化工行业带来了机遇和挑战,一方面,由于可再生能源电力消纳问题导致大量的弃水、弃光等能源浪费;另一方面,以绿氢为原料替代碳基化石能源合成氨,可以极大地减少化工行业的碳排放。因此,利用水力、光伏等可再生能源电解水制氢,为合成氨提供绿色原料,可显著提升可再生能源消纳能力,降低能耗与碳排放,服务国家“碳达峰、碳中和”目标。然而,可再生能源电力电量的波动性难以适配传统合成氨生产过程对平稳性的要求,大规模可再生能源电解水制氢合成氨的设计与运行依然存在诸多挑战,亟需开展系统性研究,以突破适应可再生能源波动特性的大规模电解水制氢合成氨系统的集成与调控关键技术。对此,本文首先讨论了可再生能源电解水制氢合成氨的工艺过程及拓扑结构,包括电解水制氢工段、压缩缓冲工段、化工合成氨工段,进而探讨该系统建设的关键技术体系,包括可再生能源波动条件下的合成氨多稳态工艺优化和柔性调控技术、考虑“电–热–质”耦合的大规模电解水制氢系统的模块化集成和集群动态控制技术、计及可再生能源波动性与化工多稳态特性的“源—网—氢—氨”的全系统协同控制技术、计及电、氢、氨等要素的全方位安全防护与市场运营机制。具体内容有:针对适用于柔性生产的合成氨工艺优化及多工段协同调控技术,在考虑氢储供量与催化剂性能下,综合合成塔、压缩机、气体分离、换热网络等子系统构建合成氨高保真代理模型;提出可再生能源供给和市场需求波动下,充分考虑操作安全性和过程经济性的电解水制氢合成氨各子系统的适配方案与协同控制技术。针对大规模电解水制氢系统模块化集成和集群动态控制技术,基于奇异摄动和代理模型技术研究集群系统多时间尺度时域仿真方法,构建电解集群系统多物理耦合状态空间模型;综合考虑模块启停组合调度、模块间功率分配调度及模块自身灵活调节,计及安全运行区间及电热气接口特性约束,以提高氢产量、提升能量利用效率、改善水光电源消纳和跟踪电网调峰调频指令为目标,构建集群系统多目标分层调度与控制模型。针对氢能参与电网平衡调节的全系统协同控制技术,提出水光互补发电、制氢、储氢、合成氨、储氨多工段间稳态运行特性的多工段间灵活运行方法,以及电解水制氢合成氨系统柔性动态协同控制方法;构建静态等值和参数聚合等方法降维和等值制氢合成氨系统仿真模型,提出源网氢氨协同提升系统安全稳定性的优化控制方法和技术指标;结合电网调频和调峰特性,研究电解水制氢合成氨系统参与电力辅助服务的策略。建设大规模可再生能源电解水制氢合成氨系统,有望提高可再生能源本地消纳率和并网调度友好性,降低化工碳排放,具有显著社会效益和战略意义。
中文关键词: 氢能  合成氨  绿氢  绿氨  可再生能源  波动性
Abstract:The rapid development of new energy has brought opportunities and challenges to the electric power and chemical industry. On the one hand, the consumption of renewable energy leads to a large amount of waste of energy such as water and light. On the other hand, replacing carbon-based fossil energy ammonia with green hydrogen as raw material can greatly reduce the carbon emissions of the chemical industry. Therefore, the use of hydropower, photovoltaics, and other renewable energy sources to electrolyze water to produce hydrogen can provide green raw materials for ammonia synthesis, which can significantly improve the capacity of renewable energy consumption, reduce energy consumption, and carbon emissions, and serve the national goal of “carbon peaking and carbon neutrality”. However, the fluctuation of renewable energy power is difficult to meet the stability requirements of the traditional synthetic ammonia production process, and there are still many challenges in the design and operation of large-scale renewable energy electrolysis of water to produce hydrogen and synthetic ammonia. There is an urgent need to carry out systematic research and breakthroughs in key technologies for the integration and regulation of large-scale electrolysis of water for hydrogen production to ammonia synthesis systems that adapt to the fluctuating characteristics of renewable energy. In this regard, the process and its topology structure of the renewable energy electrolysis water and the synthesis ammonia process are firstly introduced, including the electrolysis water hydrogen production section, the compression buffer section, and the chemical ammonia synthesis section. Furthermore, the key technical system for the construction of the system was proposed, including the synthetic ammonia process multi-stable optimization and flexible control technology under the fluctuating conditions of renewable energy, the modular integration and cluster dynamic control technology for large-scale hydrogen production system by electrolytic water with “electricity–heat–mass” coupling, “source—grid—hydrogen—ammonia” system-wide coordinated control technology for the volatility of renewable energy and multi-stable characteristics of the chemical industry, comprehensive security protection and market operation for electricity, hydrogen, ammonia, and other elements mechanism. Contents include: Aiming at the optimization of the synthetic ammonia process and multi-stage cooperative regulation technology suitable for flexible production, a high-fidelity proxy model for synthetic ammonia is developed by integrating the subsystems of the synthetic tower, compressor, gas separation, and heat transfer network, considering the hydrogen storage and supply quantity and the performance of the catalyst. The adaptation scheme and collaborative control technology of each subsystem of water electrolysis for hydrogen production and ammonia synthesis under the fluctuation of renewable energy supply and market demand are studied. Aiming at the modular integration and cluster dynamic control technology of large-scale water electrolysis and hydrogen production system, the multi-time-scale time-domain simulation method of the cluster system is studied based on singular perturbation and surrogate model technology, and the multi-physical coupling state space model of the electrolytic cluster system is established. Considering the module startup-shutdown unit commitment scheduling, scheduling and power allocation between the modules, and safe operation of the interval constraint and electro-thermal interface features, to improve the hydrogen yield, improve energy efficiency, improve the power tracking and grid load frequency control as the goal, to build the multi-objective hierarchical cluster system scheduling and control model. Aiming at the whole system cooperative control technology of hydrogen energy participating in the power grid, the flexible operation method of multiple sections with steady-state operation characteristics of hydro-solar complementary power generation, power-to-hydrogen production, hydrogen storage, ammonia synthesis, and ammonia storage is studied, and the flexible dynamic cooperative control method of electric hydrogen production and ammonia synthesis system is also studied. The simulation model of electric hydrogen production and ammonia synthesis system with static equivalent and parameter aggregation methods is integrated. The optimal control method and technical index of the system with hydrogen and ammonia in the source grid are studied. Combined with the characteristics of frequency modulation and peak regulation, the strategy of power-to-hydrogen production and ammonia synthesis system participating in power system auxiliary service is studied. It has significant social benefits and strategic significance to improve the local consumption rate of renewable energy and the friendliness of grid-connected scheduling and reduce chemical carbon emissions and reduce chemical carbon emissions by building a large-scale water electrolysis system for hydrogen production and ammonia synthesis with renewable energy.
文章编号:202200660     中图分类号:    文献标志码:
基金项目:国家重点研发计划项目(2021YFB40005)
作者简介:第一作者:吉旭(1968—),男,教授,博士生导师. 研究方向:绿色能源与化工耦合的关键技术;绿氢、绿氨的安全技术与新工艺. E-mail:jixu@scu.edu.cn吉旭, 四川遂宁人,过程系统工程专家。清华大学本科,四川大学硕博士。四川大学化工学院教授,博士生导师,四川大学互联化工研究中心主任,首席科学家;中国系统工程学会过程系统专业委员会委员,中国化工学会信息技术应用专业委员会委员,中国化学学会公共安全化学专委会委员,化学工业专用仪器仪表标准化技术委员会委员,四川省普通本科高等学校公安技术与安全科学工程类专业教学指导委员会委员,四川省高性能计算专业委员会委员,四川省科技厅、经济与信息化厅、水利厅专家库成员。长期从事过程系统工程、新能源材料、材料研发高通量平台及智慧实验室、过程行业智能制造理论与技术、工业大数据和人工智能、过程可靠性与安全等领域的研究。完成技术转化超1.1亿元,项目范围覆盖能源、化工、电子、机械、建筑材料、高分子功能材料和核工业等领域的工业智能化。针对风光可再生能源满足宽时域工业化应用的波动性和不确定性,构建了连续生产的多稳态柔性工艺技术体系,解决风光出力属性与经济性评价、氢(电) 缓存策略、多稳态优化、柔性工艺拓扑结构、智能计划调度与控制、长周期安全与可靠性管理等难题,在可再生能源制氢耦合绿色化工领域取得了重要进展,显著提升了大规模工业利用可再生能源的经济性与适用性。获重庆市2019年科学技术进步一等奖、四川大学第五届德沃群芳育人文化教学标兵团队奖、中国化工教育协会“全国石油和化工优秀教学团队”奖(2次)、中国石油和化工教育教学优秀论文一等奖、四川省教学成果一等奖等奖励。
引用文本:
吉旭,周步祥,贺革,邱一苇,毕可鑫,周利,戴一阳.大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J].工程科学与技术,2022,54(5):1-11.
JI Xu,ZHOU Buxiang,HE Ge,QIU Yiwei,BI Kexin,ZHOU Li,DAI Yiyang.Research Review of the Key Technology and Application of Large-scale Water Electrolysis Powered by Renewable Energy to Hydrogen and Ammonia Production[J].Advanced Engineering Sciences,2022,54(5):1-11.