本文已被:浏览 495次 下载 220次
投稿时间:2022-07-06 修订日期:2022-10-26
投稿时间:2022-07-06 修订日期:2022-10-26
中文摘要: 为了评价冻土区路基的稳定性,本文对土体长期振动荷载下的动力特性进行研究,通过室内试验和理论分析相结合的手段对青藏铁路沿线填土的动力力学特性(动剪切模量和阻尼比)进行了分析。首先开展了室内固结不排水长期循环三轴试验,分析了不同负温、循环应力比对路基粉质黏土和地基砂土的动剪切模量和阻尼比等动力特性的影响。结果表明,路基粉质黏土的动剪切模量与温度呈现明显的负相关性,且随着循环应力比增大而呈现出较明显的增长趋势,阻尼比随着动剪切模量的增长而减小;地基砂土的动剪切模量和阻尼比受温度的影响与粉质黏土的响应规律呈现相同趋势,在温度为-10 ℃与循环应力比为0.2的相同条件下动剪切模量增至1.22倍,而阻尼比则减少到0.66倍。值得注意的是,砂土动剪切模量在循环应力比约为1时响应达到峰值,即动应力幅值达到围压时循环应力比增大,阻尼比增大而动剪切模量则呈现减小的趋势。随后在Wichtmann提出的高周循环模型基础上,建立了动剪切模量预测模型,能良好地反映动剪切模量在温度和循环应力比影响下,随振动次数变化的响应规律,通过拟合参数w0反映动剪切模量随循环应力比先增后减的规律,拟合数学关系显示长期振动次数约在13000次或振动时长8 min以上时,土体的动力响应规律发生了明显变化。最后,基于Hardin-Drnevich双曲线模型对动剪切模量和阻尼比的试验结果进行拟合,得到了动剪切模量与阻尼比的函数关系式,从而能大致预测阻尼比随动剪切模量变化的趋势及范围,随着归一化剪切模量的增大阻尼比呈现出减小的趋势。
中文关键词: 青藏铁路 负温动三轴试验 动力力学参数 循环应力比 高周循环预测经验模型
Abstract:In order to evaluate the stability of roadbed in frozen soil area, the dynamic shear modulus and damping ratio of fill along Qinghai—Tibet railway are analyzed by means of laboratory test and theoretical analysis. Firstly, the long-term consolidation undrained cyclic triaxial tests were carried out to analyze the effects of different negative temperature and cyclic stress ratio on dynamic shear modulus and damping ratio of subgrade silty clay and foundation sand. The results show that for subgrade silty clay, the dynamic shear modulus is negatively correlated with temperature, and increases with the increase of cyclic stress ratio, and the damping ratio decreases with the increase of dynamic shear modulus. For foundation sand, the dynamic shear modulus and damping ratio show the same trend under the influence of temperature as that of silty clay, but the value of dynamic shear modulus is about 110 MPa higher than that of damping ratio under the condition of -10 ℃ temperature and cyclic stress ratio of 0.2, which is 1.22 times, and the damping ratio is 0.66 times. It is worth noting that the dynamic shear modulus of sand responds to the peak value when the cyclic stress ratio is about 1, which means that when the dynamic stress amplitude reaches the confining pressure, the dynamic shear modulus tends to decrease while the damping ratio tends to increase with the increase of the cyclic stress ratio. Then, based on the high cycle model proposed by Wichtmann, the prediction model of dynamic shear modulus was established, which can well reflect the response law of dynamic shear modulus with vibration number under the influence of temperature and cyclic stress ratio. The fitting parameter w0 reflects the law of dynamic shear modulus increasing first and then decreasing with cyclic stress ratio. The fitted mathematical relationship shows that the dynamic response law of soil changes significantly when the number of long-term vibrations is about 13000 or the vibration duration is more than 8 minutes. Finally, based on Hardin-Drnevich hyperbolic model, the experimental results of dynamic shear modulus and damping ratio were fitted, and the functional relationship between dynamic shear modulus and damping ratio was obtained, so as to roughly predict the trend and range of damping ratio with the change of dynamic shear modulus. With the increase of normalized shear modulus, the damping ratio tended to decrease.
keywords: Qinghai—Tibet railway dynamic triaxial test dynamic mechanical parameters cyclic stress ratio multiple-cycle forecasting empirical model
文章编号:202200694 中图分类号:TU435 文献标志码:
基金项目:中国铁道科学院集团有限公司基金项目(2020YJ037)
作者简介:第一作者:董亮(1979—),女,研究员,博士. 研究方向:高速、重载及既有线铁路工程的理论和技术. E-mail:dongl123@163.com;通信作者:姚昌瑞, E-mail:ycr_hit@163.com
引用文本:
董亮,姚昌瑞,田爽,王柯,苏永华.青藏铁路沿线负温填土长期动力力学特性试验研究[J].工程科学与技术,2023,55(2):50-58.
DONG Liang,YAO Changrui,TIAN Shuang,WANG Ke,SU Yonghua.Experimental Study on Long-term Dynamic and Mechanical Properties of Negative Temperature Fill Along Qinghai—Tibet Railway[J].Advanced Engineering Sciences,2023,55(2):50-58.
引用文本:
董亮,姚昌瑞,田爽,王柯,苏永华.青藏铁路沿线负温填土长期动力力学特性试验研究[J].工程科学与技术,2023,55(2):50-58.
DONG Liang,YAO Changrui,TIAN Shuang,WANG Ke,SU Yonghua.Experimental Study on Long-term Dynamic and Mechanical Properties of Negative Temperature Fill Along Qinghai—Tibet Railway[J].Advanced Engineering Sciences,2023,55(2):50-58.