###
工程科学与技术:2023,55(5):242-252
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于注意力机制与双线性池化的锈蚀等级评估
(1.三峡大学 水电机械设备设计与维护湖北省重点实验室,湖北 宜昌 443002;2.国家大坝安全工程技术研究中心,湖北 武汉 430010)
Evaluating Rust Grades Based on Attention Mechanism and Bilinear Pooling
(1.Hubei Key Lab. of Hydroelectric Machinery Design & Maintenance, China Three Gorges Univ., Yichang 443002, China;2.National Dam Safety Research Center, Wuhan 430010, China)
摘要
图/表
参考文献
相似文献
附件
本文已被:浏览 368次   下载 261
投稿时间:2022-07-20    修订日期:2022-08-06
中文摘要: 水工机械装备(如闸门、拦污栅等)长期服役于水域环境,其结构表面会不可避免地产生锈蚀。对于重要的关键受力结构件,如果不能准确检测其锈蚀的严重程度,会导致其维修加固不及时,进而直接威胁受损结构周围人员的生命安全。目前,对水工机械装备锈蚀特征识别主要以人工目视检测为主,容易导致视觉疲劳、主观性较强、锈蚀程度的检测准确率不高等问题。为此,本文提出以VGG-16(visual geometry group,VGG)网络为基础、融合注意力机制和双线性池化的锈蚀等级评估方法。首先,利用RGB(red green and blue)和HSV(hue saturation and value)两种色彩空间中不同分量包含锈蚀图像特征不同的特点,将不同色彩空间作为不同支路网络的输入,使其能够充分利用不同色彩空间的图像特征;其次,在两个支路网络中嵌入注意力机制,通过注意力机制的可训练权重对锈蚀图像的特征进行重标定,调整权重,聚焦于最相关的特征进行学习;再次,采用双线性池化融合不同支路提取的特征,使网络聚焦于最相关的细粒度图像特征,提高网络模型对锈蚀图像细微差异特征的利用;最后,通过盐雾锈蚀实验获取锈蚀图像数据,并在数据集上对本文方法进行消融和对比分析。结果表明,相较于原模型及其他主流算法,改进后模型的分类准确率达到了0.953,精确率、召回率、F1系数等评价指标均有大幅提升,本文方法对于不规则锈蚀图像特征能够取得更好的评估效果,可以转化应用于工程实践。
Abstract:Hydraulic machinery and equipment (such as gates, trash racks, etc.) inevitably suffered from corrosion on their structural surfaces due to the long-term usage in the water environment. If the severity of corrosion cannot be accurately detected, the maintenance and strengthening of important key stress-bearing structural components may fail to be timely implemented, which further threatens people’s life around the damaged structure. Currently, the identification of corrosion features of hydraulic machinery and equipment mainly depends on manual visual inspection, resulting in strong subjectivity, poor detection accuracy limited by visual fatigue. To address this issue, a corrosion-rating evaluation method is proposed by incorporating the attention mechanism and bilinear pooling into the VGG-16 (visual geometry group, VGG) backbone. Considering that different components in the RGB (red green and blue) and HSV (hue saturation and value) color spaces present distinctive features on the rust image, a multi-branch neural architecture is designed to learn informative features by taking different color spaces as inputs. The attention mechanism is embedded in the branch network to recalibrate the features of the rust image by the learnable weights, focusing on the learning of task-oriented features to support the evaluation. The bilinear pooling is applied to fuse the extracted representations of branch networks to enhance the fine-grained features, which improves the ability to utilize the contrastive details. A rust image dataset is constructed to validate the proposed approach using the salt spray corrosion test . Experimental results demonstrate that the proposed approach outperforms the selective baselines, achieving a 0.953 detection and other measurements, including the precision, recall and F1 scores, are also greatly improved. Most importantly, the proposed approach can achieve better performance for irregular corrosions, which has huge potential for the application of the engineering practice.
文章编号:202200470     中图分类号:TP319.3;TH132.2    文献标志码:
基金项目:国家自然科学基金项目(51975324);国家大坝安全工程技术研究中心开放基金项目(CX2022B06);湖北省教育厅科研项目(B2021036)
作者简介:第一作者:陈法法(1983-),男,教授,博士.研究方向:水工机械装备的服役可靠性评估.E-mail:chenfafa2005@126.com;通信作者:陈保家,教授,E-mail:cbjia@163.com
引用文本:
陈法法,董海飞,潘瑞雪,杨蕴鹏,陈保家.基于注意力机制与双线性池化的锈蚀等级评估[J].工程科学与技术,2023,55(5):242-252.
CHEN Fafa,DONG Haifei,PAN Ruixue,YANG Yunpeng,CHEN Baojia.Evaluating Rust Grades Based on Attention Mechanism and Bilinear Pooling[J].Advanced Engineering Sciences,2023,55(5):242-252.