###
工程科学与技术:2023,55(4):216-223
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于CFSFDP图拉普拉斯算法的非侵入式负荷监测方法
(1.国网河北省电力有限公司 石家庄供电分公司, 河北 石家庄 050051;2.四川大学 电气工程学院, 四川 成都 610065)
Non-intrusive Load Monitoring Method Based on CFSFDP Graph Laplace Algorithm
(1.Shijiazhuang Power Supply Branch, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050051, China;2.School of Electrical Eng., Sichuan Univ., Chengdu 610065, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 400次   下载 179
投稿时间:2022-01-11    修订日期:2022-06-16
中文摘要: 非侵入式负荷监测(NILM)是中国未来电网建设的重要发展方向之一。为克服传统非侵入式负荷监测方法的计算数据量大、辨识准确率较低等问题,提出了一种基于快速密度峰值搜索算法(CFSFDP)图拉普拉斯算法的非侵入式负荷监测方法。首先,该方法利用输入的设备有功功率数据采取快速密度峰值搜索聚类算法构建家用电器的功率阈值向量和先验图结构;然后,结合图信号的平滑度特征和总功率信号构建图拉普拉斯二次型最优函数,利用Tikhonov正则化方法以迭代的方式求得最优解,从而实现用电负荷图信号的重构;最后,根据功率阈值向量将图信号转换为功率信号,即可实现用户的非侵入式负荷监测。对某一家庭2 d的实测用电数据进行仿真分析,包括2 d内的负荷监测结果和采样频率对算法性能的影响,结果如下:1)该方法能够识别出第1天内工作的所有设备,各用电设备消耗用电量比例与实际耗电量比例接近。2)该方法对第2天的负荷识别准确率达到了90.1%,优于4种对比算法。单个用电设备的分解精度达到91%以上,绝大多数设备的用电量误差都低于对比算法。3)当数据采样间隔增大为2 min,所提算法的准确率、辨识精度和单设备分解精度都有所降低,但数值上优于对比算法,并且有更优的时间复杂度。研究结果验证了所提非侵入式负荷监测方法的有效性及其优越性,对于解决实际低频NILM问题有很大的优势。
Abstract:Non-intrusive load monitoring (NILM) is one of the important development directions of power grid construction in China in the future. In order to overcome the problems of large amount of calculation data and low identification accuracy of traditional NILM methods, a non-intrusive load monitoring method based on CFSFDP (clustering by fast search and find of density peaks) graph Laplace algorithm was proposed in this paper. Firstly, the power threshold vector and the prior graph structure were constructed using the active power data adopting the CFSFDP algorithm. Then, the graph Laplacian quadratic optimal function was constructed by combining the total power signal and graph signal smoothness, and the optimal solution was obtained iteratively by Tikhonov regularization method, so as to realize the reconstruction of graph signal of appliance. Finally, the graph signals were converted into power signals according to the power threshold vector, which enabled non-intrusive load monitoring. The following results were obtained from the simulation analysis of two days of measured electricity consumption data of a real household,including the load monitoring results within two days and the impact of sampling frequency on the algorithm performance. 1) The proposed method can identify all the equipments running within the first day, and the calculated proportion of electricity consumed by each electric equipment is close to the actual situation. 2) The load identification accuracy of the proposed method for the next day is 90.1%, which is superior to four comparison methods. The decomposition accuracy of a single appliance is more than 91%, and the vast majority of devices have lower power consumption error than the comparison methods. 3) When the data sampling interval is increased to 2 min, although the precision, identification accuracy and single appliance decomposition accuracy of the proposed method are all reduced, its calculation results gains superior performance and time complexity than the comparison methods. The simulation results verify the effectiveness of the proposed non-intrusive load monitoring method and its superiority for solving practical low-frequency NILM problems.
文章编号:202200034     中图分类号:TM714    文献标志码:
基金项目:国家自然科学基金青年基金项目(52107117)
作者简介:第一作者:林平川(1994-),男,助理工程师.研究方向:智能用电.E-mail:linpc13931170195@163.com;通信作者:郑迪文,E-mail:864647962@qq.com
引用文本:
林平川,路磊,谷超,冯俊国,张仕文,杨顺尧,于丹,郑迪文,汪颖.基于CFSFDP图拉普拉斯算法的非侵入式负荷监测方法[J].工程科学与技术,2023,55(4):216-223.
LIN Pingchuan,LU Lei,GU Chao,FENG Junguo,ZHANG Shiwen,YANG Shunyao,YU Dan,ZHENG Diwen,WANG Ying.Non-intrusive Load Monitoring Method Based on CFSFDP Graph Laplace Algorithm[J].Advanced Engineering Sciences,2023,55(4):216-223.