###
工程科学与技术:2023,55(4):188-196
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于自适应卡尔曼滤波加速度与位移融合的结构位移实时估计
(1.四川大学 建筑与环境学院, 四川 成都 610065;2.四川大学 建筑与环境学院 深地科学与工程教育部重点实验室, 四川 成都 610065)
Real-time Structural Displacement Estimation by Fusing Acceleration and Displacement Data with Adaptive Kalman Filter
(1.College of Architecture and Environment, Sichuan Univ., Chengdu 610065, China;2.Key Lab. of Deep Underground Sci. and Eng. for Ministry of Education, College of Architecture and Environment, Sichuan Univ., Chengdu 610065, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 373次   下载 221
投稿时间:2022-01-06    修订日期:2022-06-12
中文摘要: 实时高精度位移测量在工程结构的安全和寿命评估方面有着重要作用。为提高基于全球导航卫星系统技术的位移测量的精度及稳定性,本文提出了一种融合加速度和位移数据的自适应多速率卡尔曼滤波方法,来实时获取精度提升的位移信息。由于不合理的噪声参数设置会使位移估计的精度严重下降,利用加速度和位移数据测量噪声各自的特点,以分开估计相应噪声方差的思路来实现自适应估计;考虑传感器噪声的性质,自适应滤波中对噪声参数的估计可简化为仅对位移噪声方差进行估计;利用Sage-Husa估计器实现位移噪声方差的自适应估计,使滤波能在噪声参数未准确获知的情况下进行稳定的位移实时估计。讨论了自适应滤波中初始噪声参数的影响,确定了初始系统噪声参数的选取原则;分别在时不变与时变位移噪声环境下,观察该滤波应用于不同频率的谐波位移信息下的估计性能;以某1.5 MW风电塔在风-地震耦合作用下塔顶结构响应的数值模拟,说明本文的自适应滤波在一般工程结构应用中的有效性。结果表明,即使初始噪声参数设置有误或位移噪声具有时变性,本文方法依然具有较好的估计效果及鲁棒性。研究成果可为结构实时高精度位移监测提供一定理论支撑与参考。
Abstract:Real-time high-precision displacement measurement is important for the safety and life-cycle assessment of engineering structures. To improve the accuracy and stability of displacement measurement based on Global Navigation Satellite System (GNSS) technology, an adaptive multi-rate Kalman filter is proposed to fuse the acceleration and displacement data. Due to unreasonable settings of noise parameters, the accuracy of displacement estimation can be seriously degraded. By utilizing the characteristics of acceleration and displacement measurement noises, the adaptive estimation is realized through estimating the variance of their corresponding noises separately. Considering the noise characteristics of accelerometer and GNSS device, the estimation of noise parameters in the adaptive filter is simplified to estimate only the variance of displacement noise. The Sage-Husa estimator is used to realize the adaptive estimation of displacement noise variance so that the filter can reach a stable real-time displacement estimation under inaccurate noise parameters. First, the settings of initial noise parameters in the proposed adaptive filter are discussed to determine its rule. Then the displacement estimation performance of the filter at different signal frequencies is discussed through the harmonic displacement under time-invariant noise and time-varying noise. Finally, the effectiveness of the proposed technique is demonstrated by using a numerical simulation response from a 1.5 MW wind turbine tower under wind-earthquake coupling. The results show that even if the initial noise parameters are inaccurate and the displacement measurement noise is time-varying, the proposed technique still has satisfactory performance and robustness in real-time estimation. This research can provide a reference for real-time and high-precision displacement monitoring of structures.
文章编号:202200013     中图分类号:TU317;O32    文献标志码:
基金项目:国家自然科学基金项目(51878426);成都市科技项目(2019-GH02-00081-HZ)
作者简介:第一作者:曾竞骢(1998-),男,硕士生.研究方向:结构健康监测.E-mail:jingcong.z@qq.com;通信作者:施袁锋,副教授,E-mail:shiyuanfeng@scu.edu.cn
引用文本:
曾竞骢,施袁锋,戴靠山,廖光明.基于自适应卡尔曼滤波加速度与位移融合的结构位移实时估计[J].工程科学与技术,2023,55(4):188-196.
ZENG Jingcong,SHI Yuanfeng,DAI Kaoshan,LIAO Guangming.Real-time Structural Displacement Estimation by Fusing Acceleration and Displacement Data with Adaptive Kalman Filter[J].Advanced Engineering Sciences,2023,55(4):188-196.