###
工程科学与技术:2022,54(6):85-96
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
软弱破碎围岩深埋隧道拱顶渐进性塌方机理及控制
(1.苏交科集团股份有限公司 江苏省水下隧道绿色智慧技术工程研究中心,江苏 南京 210019;2.北京交通大学 城市地下工程教育部重点实验室,北京 100044)
Progressive Collapse Mechanism and Safety Control of Deep Buried Tunnel Vault in Soft and Broken Surrounding Rock
(1.JSTI Group, Jiangsu Province Eng. Research Center of Underwater Tunnel Green Intelligent Technol., Nanjing 210019, China;2.Tunnel and Underground Eng. Research Center of Ministry of Education, Beijing Jiaotong Univ., Beijing 100044, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 70次   下载 28
投稿时间:2021-09-28    修订日期:2022-08-08
中文摘要: 隧道拱顶塌方事故是近年来隧道施工中造成重大人员伤亡的主要事故类型,危害极大。掌握隧道拱顶塌方的发生机理和演化规律是塌方事故控制的关键。基于上限变分法,建立深埋隧道拱顶塌方模型,推导出隧道拱顶塌方范围预测曲线,进一步结合软弱破碎围岩深埋隧道拱顶渐进性塌方特性,推导出隧道拱顶渐进性塌方范围全过程曲线,并与模型试验结果进行对比。据此提出拱顶塌方事故的安全性控制措施,揭示了预控制、过程控制两类措施下拱顶塌方控制机理和承载特性,并给出支护措施的围岩荷载确定方法。结果表明:隧道塌方宽度L随着初始黏聚力c0和单轴抗拉强度σt的增大而增大,随着重度γ和非线性系数m的增大而减小;隧道塌方高度h1随着抗拉强度σt和非线性系数m的增大而增大,随着初始黏聚力c0和围岩重度γ的增大而减小;考虑围岩黏聚力和抗拉强度的多次衰减,隧道拱顶渐进性塌方的预测曲线与模型试验的规律较为符合;根据控制机理和目标,可将拱顶塌方控制措施分为预控制和过程控制措施;形变荷载与塌方荷载的比值κ随着初期刚度系数k0、原岩应力p0的增大而增大,随着塌方高度h1、弹性模量E的增大而减小,且κ与隧道半径R和泊松比ν关系不大;围岩的形变荷载和总荷载均随着塌方荷载的增大而增大。
Abstract:Tunnel vault collapse is the main type of tunnel accident that has brought huge injuries and deaths, and the causes and prevention of tunnel vault collapse have aroused great concern. To solve the safety problems of tunnel vault collapse, the occurrence mechanism and evolution law are investigated. Using the upper limit variational method, the collapse prediction model of tunnel vault in deep overburden ground is developed, and the prediction curve of tunnel vault collapse range is derived. Considering the progressive collapse characteristics of deep buried tunnel vault in weak and broken surrounding rock, the whole process curve of the progressive collapse range is derived and compared to the model test results. Furthermore, the control principle and bearing mechanism of tunnel collapse with pre-control and process control measures are respectively clarified. The method to determine the surrounding rock load of support measures is proposed. The following results are found. The width of tunnel collapse increases with initial cohesion and uniaxial tensile strength, however, it decreases with weight and the nonlinear coefficient. The height of Tunnel collapse increases with tensile strength and nonlinear coefficient, and it decrease with initial cohesion and weight. Considering the multiple attenuation of cohesion and tensile strength of surrounding rock, the prediction curve of progressive collapse of tunnel vault is in good agreement with the characteristics of model test. The control measures of vault collapse can be divided into pre-control and process control considering control mechanism and objectives. The ratio of deformation load to collapse load increases with initial stiffness coefficient and original rock stress, decreases with collapse height and elastic modulus, and is little affected by tunnel radius and Poisson’s ratio. Both deformation load and total load of surrounding rock increase with the increase of collapse load.
文章编号:202100980     中图分类号:U455    文献标志码:
基金项目:国家自然科学基金项目(51738002);住建部科技项目(2019–K–110)
作者简介:第一作者:李奥(1992-),男,工程师,博士.研究方向:隧道与地下工程围岩稳定性控制.E-mail:15115279@bjtu.edu.cn
引用文本:
李奥,张顶立,黄俊,董飞,侯艳娟,孙振宇.软弱破碎围岩深埋隧道拱顶渐进性塌方机理及控制[J].工程科学与技术,2022,54(6):85-96.
LI Ao,ZHANG Dingli,HUANG Jun,DONG Fei,HOU Yanjuan,SUN Zhenyu.Progressive Collapse Mechanism and Safety Control of Deep Buried Tunnel Vault in Soft and Broken Surrounding Rock[J].Advanced Engineering Sciences,2022,54(6):85-96.