###
工程科学与技术:2022,54(4):147-154
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
驻留式电解微气泡流动稳定性及减阻性能
(厦门大学 航空航天学院,福建 厦门 361102)
In-flow Stability and Flow Drag Reduction Performance of Resident Electrolyzed Microbubble Array
(School of Aerospace Eng., Xiamen Univ., Xiamen 361102, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 203次   下载 88
投稿时间:2021-04-30    修订日期:2021-10-07
中文摘要: 针对航行体表面稳定高效水下减阻问题,提出自稳式电解微气泡阵列流动减阻性能试验研究。制备电极壁面微柱孔阵列表面试片经电解形成稳定微气泡阵列气膜,揭示电解电压、微柱孔尺寸、来流速度影响电解微气泡生长行为、驻留稳定性的作用机制,通过试验及数值方法研究微气泡阵列流动减阻性能,分析减阻机理。研究结果表明,电极壁面微柱孔可实现微气泡电解自适应启停控制;相同微柱孔直径时,电解电压增大则微气泡达到稳定直径用时越短,但微气泡阵列稳定时间及驻留率降低;相同电解电压下,250 μm柱孔内微气泡达到稳定直径用时较少,且微气泡阵列稳定时间及驻留率更佳;气膜型驻留微气泡较突出型具备更强的驻留稳定性;电解电压为20 V时,250 μm柱孔微气泡阵列气膜表面样片平均减阻率约为23%,微气泡阵列稳定时间及驻留率达到最大值为420 s、95.46%;驻留微气泡形变及气/水两相界面力共同作用使得微气泡上侧产生大量上抛高速流动,抑制了流向涡下扫流动猝发,显著减小近壁区雷诺切应力;微气泡阵列近壁数值平均湍动能约为0.010 m2/s2小于纯平板(约为0.021 m2/s2),微气泡阵列壁面数值平均剪切力约为30 Pa小于纯平板(约为55 Pa),故可达到高效湍流减阻。
中文关键词: 电解  微气泡阵列  减阻  驻留率  猝发
Abstract:Aiming at the problem of stable high-efficiency underwater drag reduction for the vehicle surface, an experimental study on the flow drag reduction performance of autostable electrolyzed microbubble array was carried out. The test piece of electrode-wall micropore array capable of forming the stable microbubble array air film through electrolysis was prepared, revealing the mechanism of electrolysis voltage, micropore size, flow velocity affecting the growth behavior and resident stability of electrolyzed microbubbles, and the flow drag reduction performance and mechanism of microbubble array were investigated by the experimental and numerical methods. The research results indicated that the electrode-wall micropore could realize the self-adaptive start-stop control of microbubble electrolysis; the time for the microbubble to reach stable diameter was shorter, but the resident time and rate of the microbubble array would decrease under the higher electrolysis voltage; the resident time and rate of the microbubble array were greater, and the time for the microbubble to reach stable diameter was shorter for the 250 μm micropore; the microbubble array’s average drag reduction rate was about 23%, and the maximum resident time and rate were 420 s, 95.46%, respectively, for the 250 μm micropore when the voltage was 20 V; the resident microbubble deformation and the air/water interfacial force jointly caused a large amount of upward throwing high-speed flow above microbubbles, which suppressed the down-sweep flow burst of flow direction vortices, and significantly reduced the near-wall Reynolds shear stress; the microbubble array near-wall numerical average kinetic energy was about 0.010 m2/s2 less than that of pure flat plate (about 0.021 m2/s2), the microbubble array numerical average wall shear was about 30 Pa less than that of pure flat plate (about 55 Pa), thus the high-efficiency turbulent drag reduction was achieved.
文章编号:202100387     中图分类号:V211.1+7    文献标志码:
基金项目:装备预研教育部联合基金项目(6141A02033529);“十三五”装备预研领域基金项目(61402060405)
作者简介:第一作者:朱睿(1980-),男,副研究员,博士.研究方向:实验/计算流体力学、微织构减阻.E-mail:zhurui@xmu.edu.cn;通信作者:刘志荣,E-mail:lzr1222@126.com
引用文本:
朱睿,张焕彬,庄启彬,温潍齐,张子捷,何星宇,刘志荣.驻留式电解微气泡流动稳定性及减阻性能[J].工程科学与技术,2022,54(4):147-154.
ZHU Rui,ZHANG Huanbin,ZHUANG Qibin,WEN Weiqi,ZHANG Zijie,HE Xingyu,LIU Zhirong.In-flow Stability and Flow Drag Reduction Performance of Resident Electrolyzed Microbubble Array[J].Advanced Engineering Sciences,2022,54(4):147-154.