###
工程科学与技术:2021,53(6):54-63
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
不同卸载速率下煤岩采动力学响应试验研究
(1.中国平煤神马集团炼焦煤资源开发及综合利用国家重点实验室,河南 平顶山 467000;2.四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院,四川 成都 610065;3.深圳大学 广东省深地科学与地热能开发利用重点实验室深地科学与绿色能源研究院 土木与交通工程学院,广东 深圳 518060;4.中铁工程装备集团有限公司,河南 郑州 450016)
Experimental Study on the Mechanical Response Mechanism of Different Unloading Rate to Coal Rock Mechanics
(1.State Key Lab. of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan 467000, China;2.State Key Lab. of Hydraulics and Mountain River Eng., College of Water Resource & Hydropower, Sichuan Univ., Chengdu 610065, China;3.Guangdong Provincial Key Lab. of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Inst. of Deep Earth Sciences and Green Energy, College of Civil and Transportation Eng., Shenzhen Univ., Shenzhen 518060, China;4.China Railway Eng. Equipment Group Co., Ltd., Zhengzhou 450016, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1398次   下载 529
投稿时间:2021-03-25    修订日期:2021-06-11
中文摘要: 深刻认识采动应力路径下岩体力学响应的卸载速率效应,是科学界定实际工作面推进最优速率的重要基础。基于平煤矿区煤岩初始地应力环境,定量分析了千米级赋存深度煤岩保护层开采条件下应力演化特征,展开更为符合真实应力状态的不同卸载速率下煤岩体力学行为试验测试;同时,与未考虑采动试验结果进行对比分析。研究结果表明:1)常规三轴压缩试验,试样强度受卸载速率影响较小,在卸载速率为1~4 MPa/min时,强度并无明显变化;达到5 MPa/min时,强度才有明显的上升,约为115 MPa。2)随卸载速率增加,采动过程中煤岩体强度呈现先下降后上升再下降的趋势;卸载速率为1和4 MPa/min时,煤岩体强度达到最大,其峰值应力约为64 MPa,较卸载速率3 MPa/min时提高了12%。3)低卸载速率下试件内部的微小裂隙可以充分发育、扩展,试样裂隙密度随卸载速率增加呈减小趋势,其中,卸载速率为1 MPa/min的试样裂隙密度约为卸载速率为5 MPa/min时的1.61倍,适当降低开采速度可提高瓦斯抽采效率。4)考虑采动影响的不同卸载速率下,煤岩不仅在卸载前期出现体积压缩,在破坏阶段还出现了体积膨胀,这与未考虑采动影响的煤岩卸载全过程始终处于压缩状态有明显区别,且采动煤岩强度更小,破损程度更大。研究成果可为类似地质条件开展保护层开采设计奠定一定的理论基础。
Abstract:A deep understanding of the loading and unloading rate effect of rock mass mechanical response under mining stress path is an important basis for defining the optimal advancing rate of actual working face. Based on the initial crustal stress environment of Pingdingshan mining area, the evolution law of stress under the condition of protective layer mining with the depth of kilometer was analyzed quantitatively. The research on the mechanical behavior of coal and rock mass under different unloading rates was carried out, which was more in line with the real stress state. At the same time, the comparative analysis with the results of tests without considering the mining was carried out. The results showed that: 1) In the conventional triaxial compression test, the strength of the sample was less affected by the unloading rate, and there was no obvious change at 1~4 MPa/min, and only when it reached 5 MPa/min, the strength increased significantly to about 115 MPa. 2) With the increase of unloading rate, the strength of coal and rock mass showed a trend of decreasing, rising and falling again. The strength of coal and rock mass reached the maximum under the unloading rate of 1 MPa/min and 4 MPa/min, and its peak stress was about 64 MPa, which was 12% higher than that of 3 MPa/min sample. 3) The micro cracks could be fully developed and expanded under low unloading rate, and the fracture density of the specimen decreased with the increase of unloading rate, and it was 1.61 times for 1 MPa/min and 5 MPa/min, respectively, and thus the gas drainage efficiency could be improved by properly reducing the mining speed. 4) The volume strain of coal and rock in the whole mining process at different mining speeds not only had the volume compression in the relative initial state, but also had the volume expansion in the failure stage, which could be regarded as the mining characteristics. This was obviously different from that in the relative initial state without considering the mining test, which was always volume compression under mining. The strength of coal and rock was obviously smaller, and the damage degree was greater. The research results can lay a theoretical foundation for similar geological conditions to carry out protective layer mining design.
文章编号:202100258     中图分类号:TD313    文献标志码:
基金项目:中国平煤神马集团炼焦煤资源开发及综合利用国家重点实验室开放基金资助(41040220181107–1);四川省科技计划应用基础研究项目(2021YJ0411);四川省国际科技创新合作/港澳台科技创新合作项目(2018HH0159);国家自然科学基金项目(52004167)
作者单位E-mail
高明忠 中国平煤神马集团炼焦煤资源开发及综合利用国家重点实验室河南 平顶山 467000
四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院四川 成都 610065
深圳大学 广东省深地科学与地热能开发利用重点实验室深地科学与绿色能源研究院 土木与交通工程学院广东 深圳 518060 
gaomingzhong@163.com 
王明耀 中铁工程装备集团有限公司河南 郑州 450016  
谢晶 中国平煤神马集团炼焦煤资源开发及综合利用国家重点实验室河南 平顶山 467000
四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院四川 成都 610065 
xiejing200655@163.com 
李欣凯 中国平煤神马集团炼焦煤资源开发及综合利用国家重点实验室河南 平顶山 467000  
王英伟 中国平煤神马集团炼焦煤资源开发及综合利用国家重点实验室河南 平顶山 467000  
王飞 四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院四川 成都 610065  
杨本高 四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院四川 成都 610065  
张朝鹏 四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院四川 成都 610065  
刘军军 四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院四川 成都 610065  
Author NameAffiliationE-mail
GAO Mingzhong State Key Lab. of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan 467000, China
State Key Lab. of Hydraulics and Mountain River Eng., College of Water Resource & Hydropower, Sichuan Univ., Chengdu 610065, China
Guangdong Provincial Key Lab. of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Inst. of Deep Earth Sciences and Green Energy, College of Civil and Transportation Eng., Shenzhen Univ., Shenzhen 518060, China 
gaomingzhong@163.com 
WANG Mingyao China Railway Eng. Equipment Group Co., Ltd., Zhengzhou 450016, China  
XIE Jing State Key Lab. of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan 467000, China
State Key Lab. of Hydraulics and Mountain River Eng., College of Water Resource & Hydropower, Sichuan Univ., Chengdu 610065, China 
xiejing200655@163.com 
LI Xinkai State Key Lab. of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan 467000, China  
WANG Yingwei State Key Lab. of Coking Coal Exploitation and Comprehensive Utilization, Pingdingshan 467000, China  
WANG Fei State Key Lab. of Hydraulics and Mountain River Eng., College of Water Resource & Hydropower, Sichuan Univ., Chengdu 610065, China  
YANG Bengao State Key Lab. of Hydraulics and Mountain River Eng., College of Water Resource & Hydropower, Sichuan Univ., Chengdu 610065, China  
ZHANG Zhaopeng State Key Lab. of Hydraulics and Mountain River Eng., College of Water Resource & Hydropower, Sichuan Univ., Chengdu 610065, China  
LIU Junjun State Key Lab. of Hydraulics and Mountain River Eng., College of Water Resource & Hydropower, Sichuan Univ., Chengdu 610065, China  
作者简介:第一作者:高明忠(1980-),男,教授.研究方向:岩石力学与工程.E-mail:gaomingzhong@163.com;通信作者:谢晶,E-mail:xiejing200655@163.com
引用文本:
高明忠,王明耀,谢晶,李欣凯,王英伟,王飞,杨本高,张朝鹏,刘军军.不同卸载速率下煤岩采动力学响应试验研究[J].工程科学与技术,2021,53(6):54-63.
GAO Mingzhong,WANG Mingyao,XIE Jing,LI Xinkai,WANG Yingwei,WANG Fei,YANG Bengao,ZHANG Zhaopeng,LIU Junjun.Experimental Study on the Mechanical Response Mechanism of Different Unloading Rate to Coal Rock Mechanics[J].Advanced Engineering Sciences,2021,53(6):54-63.