###
工程科学与技术:2021,53(6):113-121
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
黄河小浪底水库水–沙–电耦合过程计算
(1.武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072;2.西北农林科技大学 水利与建筑工程学院,陕西 杨凌 712100)
Coupled Modeling of Flow?Sediment Transport and Power Generation in the Xiaolangdi Reservoir
(1.State Key Lab. of Water Resources and Hydropower Eng. Sci., Wuhan Univ., Wuhan 430072, China;2.College of Water Resources and Architectural Eng., Northwest A & F Univ., Yangling 712100, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 704次   下载 370
投稿时间:2020-12-21    修订日期:2021-03-29
中文摘要: 小浪底水库是保障黄河下游防洪、供水等目标的关键性骨干工程,故研究小浪底水库优化调度方式对于水库塑造下游河道形态及排沙减淤等方面具有重要意义。研究建立了小浪底水库水–沙–电耦合的优化调度模型,通过经济价值量化发电效益与水库排沙减淤效益,形成发电效益最大和综合效益最大两类优化目标;根据小浪底水库拦沙后期调度规程,对坝前水位、下泄流量、水轮机出力进行约束,并采用动态规划逐日求解,分析了在不同优化目标下典型枯水年(2015年)与丰水年(2012年)的调度方案及其结果。结果表明:1)当优化目标为发电效益最大时,2015年和2012年的优化方案分别实现了71.30×108和102.15×108 kW·h的发电量。2)当优化目标为综合效益最大时,2015年的优化方案可实现排沙量0.31×108 t与发电量70.17×108 kW·h,而2012年的优化方案可实现排沙量1.66×108 t与发电量95.24×108 kW·h。3)2种优化目标都实现了综合效益的提升,而以综合效益最大为优化目标时,牺牲部分发电效益换取汛期库区冲刷,增加了水库使用寿命与水库排沙减淤效益,相较实际方案进一步提升了综合效益。4)2个典型年份的优化方案均较实际调度结果实现了发电效益与综合效益的提升,且丰水年的提升更为明显;此外,还针对典型年份现有调度方式,提出了相应的优化建议。
Abstract:As the controlling reservoir that possesses a large storage capacity in Yellow River, the operation of Xiaolangdi Reservoir (XLD) is of great importance to the reservoir maintenance and the downstream channel shaping. Considering the integrated economical profit of power generation and sediment discharge, an operation model of XLD was established by coupling the calculations of water-sediment balances with the calculation of power generation. There were two types of optimization objectives: the maximum of power generation and the maximum of integrated profits. The hydrographs of water level, discharge and turbine output were constrained according to the regulation rules during the late sediment-retaining period of the XLD Reservoir. The model was solved by the dynamic programming, and was adopted to obtain different operation schemes under different optimization objectives in a typical dry year of 2015 and a typical high flood year of 2012. The results showed that: 1) with the power generation as the optimization objective, the operation scheme could to energy outputs of 7.130×109 kW·h in 2015 and 10.215×109 kW·h in 2012; 2) with the integrated profits as the optimization objective, an annual power outputs of 7.017×109 kW·h and 9.524×109 kW·h could be achieved in 2015 and 2012 respectively, along with sediment discharges of 31×106 t and 166×106 t; 3) when comparing these two schemes with different optimization objectives, it could be found that both schemes would finally achieve an increase in the integrated profits, whereas the latter would result in a larger increase by sacrificing part of the power generation in exchange for a silting reduction in the reservoir; 4) optimization schemes in both typical years would produce an increase in power generation and integrated profits, with a larger increase being obtained for the typical high flow year. Furthermore, some suggestions were also proposed for improving the current operation schemes in some typical years.
文章编号:202001085     中图分类号:TV697.1    文献标志码:
基金项目:国家自然科学基金项目(51725902;51809196);国家重点研发计划项目(2017YFC0405501)
作者简介:第一作者:夏军强(1974-),男,教授,博士.研究方向:河流动力学.E-mail:xiajq@whu.edu.cn
引用文本:
夏军强,陈奕锦,邓珊珊,周美蓉,王增辉.黄河小浪底水库水–沙–电耦合过程计算[J].工程科学与技术,2021,53(6):113-121.
XIA Junqiang,CHEN Yijin,DENG Shanshan,ZHOU Meirong,WANG Zenghui.Coupled Modeling of Flow?Sediment Transport and Power Generation in the Xiaolangdi Reservoir[J].Advanced Engineering Sciences,2021,53(6):113-121.