###
工程科学与技术:2021,53(2):133-140
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于学习自动机与萤火虫算法的链路预测
(1.南昌航空大学 软件学院,江西 南昌 330063;2.南昌航空大学 信息工程学院,江西 南昌 330063)
Link Prediction Based on Learning Automaton and Firefly Algorithm
(1.School of Software, Nanchang Hangkong Univ., Nanchang 330063, China;2.School of Info. Eng., Nanchang Hangkong Univ., Nanchang 330063, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1950次   下载 623
投稿时间:2020-09-10    修订日期:2021-01-08
中文摘要: 为了探索便携交换网络的演化规律,研究其网络行为预测中的链路预测问题。便携交换网络具有节点移动性、节点间间歇性连接、高延迟等特点,其链路预测面临的挑战是节点相遇的机会性和拓扑的时变性,获得其高质量链路预测的关键是如何较全面地获取节点的属性。作者提出基于学习自动机和萤火虫算法的链路预测方法(link prediction approach for pocket switched network based on firefly algorithm, FA-LP)。采用学习自动机对节点进行自适应聚类,完成网络的社区划分;定义社区属性影响系数和移动行为影响系数,构建反映便携交换网络社区属性、节点移动性和节点间间歇性连接的相似性指标;将该指标与CN、RA、AA等指标融合,得到便携交换网络的相似性指标向量;借助差分整合移动平均自回归模型的时间序列分析能力,提取相似性指标向量序列的演化规律;采用萤火虫算法优化所构建的二分类器,预测节点对下一时刻的连接状态。INFOCOM2006和MIT两个真实数据下的实验结果表明,与受限玻尔兹曼机、弱评估器等方法相比,FA-LP具有更高的准确率和更好的稳定性。
Abstract:In order to explore the evolution law of pocket switched network (PSN), the link prediction which is a part of network behavior prediction problem in PSN was studied in this paper. PSN has lots of features such as node mobility, intermittent connection and high latency. The challenges of link prediction are the opportunistic connection and the time-varying topology. The key to obtain high-quality link prediction is how to obtain the attributes of nodes comprehensively. A link prediction method was proposed in the paper, which is based on learning automaton and firefly algorithm (FA-LP). The learning automaton was employed to cluster nodes adaptively so as to complete the community division of the network. The node community attribute influence coefficient and mobile behavior influence coefficient were defined to construct the similarity index which reflects the community attributes, node mobility and intermittent connection between nodes. After fusing the index with CN, RA, AA, etc., a similarity vector of node pairs was achieved. Taking the advantages of analyzing time series of autoregressive integrated moving average model, the evolution law of the vector sequence was extracted. The binary classifier optimized by firefly algorithm was constructed to predict the connection of node pairs at the next moment. The experimental results on INFOCOM2006 and MIT datasets show that the proposed method has better accuracy and better stability than the ones of RBM and week estimators.
文章编号:202000781     中图分类号:TP391    文献标志码:
基金项目:国家自然科学基金项目(61762065;61962037);江西省自然科学基金重点项目(20202BABL202039);江西省研究生创新专项项目(YC2020-S559)
作者简介:第一作者:舒坚(1964-),男,教授.研究方向:物联网技术;软件工程等.E-mail:shujian@nchu.edu.cn;通信作者:刘琳岚,E-mail:liulinlan@nch.edu.cn
引用文本:
舒坚,李睿瑞,熊涛,刘琳岚,孙利民.基于学习自动机与萤火虫算法的链路预测[J].工程科学与技术,2021,53(2):133-140.
SHU Jian,LI Ruirui,XIONG Tao,LIU Linlan,SUN Limin.Link Prediction Based on Learning Automaton and Firefly Algorithm[J].Advanced Engineering Sciences,2021,53(2):133-140.