###
工程科学与技术:2017,49(5):149-155
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
一种优化的gOMP稀疏OFDM信道估计方法
(天津大学 电气自动化与信息工程学院, 天津 300072)
An Optimized gOMP Algorithm for Sparse OFDM Channel Estimation
(School of Electrical and Info. Eng., Tianjin Univ., Tianjin 300072, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1917次   下载 1541
投稿时间:2016-09-12    修订日期:2017-06-27
中文摘要: 无线多径信道多呈现稀疏特性,即信道时延扩展大,但是路径的个数少,利用信道先验稀疏信息的稀疏信道估计方法可以提高稀疏信道的估计准确性。针对贪婪算法选择字典原子在残余误差最小意义下的非最优性,及广义正交匹配追踪算法gOMP利用含噪信号估计稀疏信道过程中过多的选择字典原子导致gOMP算法重建性能下降的问题,提出优化的广义正交匹配追踪算法(optimized generalized orthogonal matching pursuit,OgOMP)。在OgOMP算法原子选择阶段,采用使残余误差最小化的原子选择标准代替残差与字典内积绝对值最大化的原子选择标准以选择原子。为删除多余的误选原子,添加原子精炼步骤对每一步迭代后选择的字典原子进行二次选择,选择对应最大信道衰落系数的原子,选择的原子数与信道稀疏度相同,删除错选原子以保证重建信号与原始信号的稀疏性一致。本文仿真对比了gOMP和OgOMP算法的信道估计均方误差、误码率、残差收敛速度以及不同导频数、不同原子选择数对算法的影响。仿真结果表明:相同的误码率下,OgOMP算法比gOMP算法在估计稀疏信道时最大可以节省4 dB的信噪比,信噪比为20 dB时均方误差最大可以减小5 dB;两种算法的残差收敛速度均优于MP算法;导频数的增加可以减小两种算法的信道估计均方误差,相同信道估计性能下OgOMP算法具有更小的导频开销;每步迭代选择的原子数目不同时,相比于gOMP算法,OgOMP算法性能基本不变,具有更好的稳定性,仿真结果验证了改进算法的有效性。
Abstract:The channel estimation accuracy could be improved significantly by sparse channel estimation methods with a priori sparsity,that is,a small number of significant paths and large time delays in wireless channels.In view of non-optimal selection of atoms when minimizing residual norm error in greedy algorithms and the performance degradation of generalized orthogonal matching pursuit (gOMP) caused by selection of excessive atoms,an algorithm named optimized generalized orthogonal matching pursuit (OgOMP) was proposed.In the procedure of selecting atoms in OgOMP,the criterion of selecting an atom which had the maximal absolute inner product with residual was substituted by a new criterion which selected an atom with minimum residual norm error.In order to delete wrongly chosen atoms,an atom refine procedure which selected the atoms with maximal channel fading factors was added to make a second choice for selected atoms at each iteration.The number of selected atoms was the same as the channel sparsity and then wrongly chosen atoms were deleted for guaranteeing the sparsity consistency between reconstructed signals and original signals.Finally,the performance of gOMP and OgOMP were compared in terms of the channel estimation mean square error,the bit error rate, the convergence of residual with different pilot numbers and selected atom numbers.It was shown that OgOMP could save 4 dB signal to noise ratio at same bit error rate and gain maximum 5 dB at 20 dB signal to noise ratio compared with gOMP;The convergences of residual of gOMP and OgOMP were superior to MP;More pilots could improve channel estimation mean square error in both two algorithms and OgOMP needed fewer pilot overhead with the same channel estimation performance;When different atom numbers were used at each iteration the performance of OgOMP was almost the same and it was more stable compared with gOMP.Experiments verified the effectiveness of OgOMP.
文章编号:201601000     中图分类号:TN911.23    文献标志码:
基金项目:国家自然科学基金资助项目(61571318);海南省重点研发计划资助项目(ZDYF2016153);青海省自然科学基金重点项目资助(2015-ZJ-904)
作者简介:肖沈阳(1987-),男,博士生.研究方向:压缩感知;水声通信.E-mail:syxiao@tju.edu.cn
引用文本:
肖沈阳,金志刚,苏毅珊,张子洋.一种优化的gOMP稀疏OFDM信道估计方法[J].工程科学与技术,2017,49(5):149-155.
Xiao Shenyang,Jin Zhigang,Su Yishan,Zhang Ziyang.An Optimized gOMP Algorithm for Sparse OFDM Channel Estimation[J].Advanced Engineering Sciences,2017,49(5):149-155.