###
工程科学与技术:2017,49(Z1):139-145
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
模糊化模型概率的IMM-SUPF机动面目标跟踪
(南京理工大学 自动化学院)
IMM-SUPF for Maneuvering Area Target Tracking Based on Fuzzed Model Probability
(School of Automation, Nanjing Univ. of Sci. and Technol.)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1516次   下载 829
投稿时间:2016-08-20    修订日期:2016-12-23
中文摘要: 为了提高跟踪系统对水面机动目标的跟踪能力,本文将水面目标建模为椭圆形面目标,提出一种模糊化模型概率的交互多模型(interacting multiple model,IMM)强无迹粒子滤波算法。首先,利用现代高分辨率雷达获得的面目标扩展测量,给出了基于面目标的跟踪测量方程。其次,将强无迹粒子滤波(strong unscented particle filter,SUPF)算法引入到IMM中得到IMM SUPF。该SUPF算法利用强跟踪无迹卡尔曼滤波(strong tracking unscented Kalman filter,STUKF)产生粒子建议分布。由于STUKF采用渐消因子调整UKF的状态模型协方差和观测模型协方差的比例,使得建议分布更符合真实状态的后验概率分布,从而提高了IMM算法中子模型滤波器的估计精度。最后,基于模糊隶属度函数对粒子的模型概率进行模糊化,从而在提高真实模型滤波器中粒子模型概率的同时,减小非匹配模型滤波器中粒子模型概率,进而提高IMM算法的估计融合精度。Monte-Carlo仿真实验表明,相比于传统的基于质点目标的IMM-UPF算法,文中所提的基于面目标的IMM算法跟踪精度更高,且所提算法的误差超调量更小,收敛更快。此外,所提面目标IMM算法的跟踪精度也要高于面目标IMM-UPF算法。不同于传统的质点目标IMM算法,文中将水面目标建模为椭圆形面目标,并利用面目标扩展测量信息设计了模糊化模型概率的IMM-SUPF算法。该算法进一步提高了跟踪系统对水面机动目标的跟踪能力。
Abstract:In order to improve the tracking ability of the surface maneuvering target,the surface target was modeled as an elliptical area,and an interacting multiple model (IMM) strong unscented particle filter based on fuzzed model probability was proposed.Firstly,a measurement equation of the elliptical area target was derived by using the extended area target measurements of modern radars.Then,the IMM-SUPF was obtained by introducing the strong unscented particle filter (SUPF) into IMM.Laterly,the strong tracking unscented Kalman filter (STUKF) was utilized to generate the proposal distribution in SUPF,and a fading factor was provided in STUKF for adjusting the proportion of state-model covariance and measurement-model covariance,making the proposal distribution more consistent with the posterior probability distribution of true state and the estimation precision of the sub-filters for IMM algorithm higher.At last,the model probabilities of particles were fuzzed by the proposed fuzzy membership function.In this way,the model probabilities of particles for filter with true target model was higher while the model probabilities of particles for the incompatible filters was lower.Accordingly,the fusion accuracy of the IMM algorithm was improved.Monte-Carlo simulation results demonstrated that the tracking precision of IMM algorithm for the area target was higher than that of IMM algorithm for the particle target,and the proposed IMM algorithm had faster convergence speed and slighter overshoot than the traditional one.Moreover,the developed IMM algorithm provided higher precision than the IMM-UPF for the area target.By modeling the surface target as an elliptical area and designing the fuzzed model probability based IMM-SUPF,the proposed IMM algorithm achieved better estimation performance than the traditional IMM algorithm for the particle target.
文章编号:201600821     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(61273076)
作者简介:
引用文本:
石杰,李银伢,戚国庆,盛安冬.模糊化模型概率的IMM-SUPF机动面目标跟踪[J].工程科学与技术,2017,49(Z1):139-145.
Shi Jie,Li Yinya,Qi Guoqing,Sheng Andong.IMM-SUPF for Maneuvering Area Target Tracking Based on Fuzzed Model Probability[J].Advanced Engineering Sciences,2017,49(Z1):139-145.