###
DOI:
工程科学与技术:2016,48(4):175-180
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于大气消光系数和引导滤波的浓雾图像去雾算法
(四川大学制造学院)
Algorithm about Dense Fog Image Dehazing Based on Atmospheric Extinction Coefficient and Guided Filtering
(School of Manufacturing Science and Engineering Sichuan Univercity)
摘要
图/表
参考文献
相似文献
附件
本文已被:浏览 2037次   下载 694
投稿时间:2016-01-06    修订日期:2016-04-06
中文摘要: 针对浓雾天气下户外采集的图像退化严重的问题,提出了一种浓雾图像的去雾算法。本文简化了雾天成像物理模型,提出雾浓度因子的概念,并在分析影响雾天能见度因素时借助大气消光系数建立了能见度和雾浓度因子的关系。通过对单幅浓雾图像的能见度值进行估计求得雾浓度因子的值,再结合灰度图像引导滤波估计大气光值,最后借助修复函数完成有雾图像的去雾处理。去雾实验结果显示:本文算法处理后的图像亮度效果好,图像对比度和清晰度高,图像整体视觉感知效果好。
Abstract:In order to deal with the problems that dense fog influenced the image quality, a dense fog image defogging algorithm was put forward. In this paper, the physical model of imaging in fog was simplified,and the concept of fog concentration factor was put forward. The relationship between visibility and fog concentration factor was established when this paper analyzed the factors affecting the concentration of fog. By seeking the value of the fog concentration factor and Estimating the value of atmospheric light using guided filtering, the dense fog image could be recovered. Experimental results showed that after the algorithm the image brightness is higher, the image contrast and resolution is higher, and the overall visual perception of the image is better.
文章编号:201600020     中图分类号:    文献标志码:
基金项目:名称:四川省科技支撑计划资助项目 项目号:(2014KJT070) 课题名称:基于云数据的高速公路车辆雨雾灾害动态预警的关键技术研究
作者简介:
引用文本:
龙伟,傅继贤,李炎炎,夏玉琪,杨国涛.基于大气消光系数和引导滤波的浓雾图像去雾算法[J].工程科学与技术,2016,48(4):175-180.
longwei,fujixian,李炎炎,夏玉琪,yangguotao.Algorithm about Dense Fog Image Dehazing Based on Atmospheric Extinction Coefficient and Guided Filtering[J].Advanced Engineering Sciences,2016,48(4):175-180.