###
工程科学与技术:2014,46(6):19-24
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
一种基于Logistic和RONSA的信用评分模型
(1.武汉理工大学经济学院;2.湖北民族学院信息工程学院)
ACreditScoringModelBasedonLogisticRegressionandRONSA
(1.SchoolofEconomics,WuhanUniv.ofTechnol.;2.CollegeofInfo.Eng.,HubeiUniv.forNationalities)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2243次   下载 2
投稿时间:2014-06-24    修订日期:2014-09-02
中文摘要: 为了探讨否定选择算法用于信用评分的可行性及其效果,提出一种R集优化否定选择算法(R-optimizednegativeselectionalgorithm,简称RONSA)作为信用评分模型的分类器算法,并运用Logistic回归分析提取影响客户信用的分类指标作为人工免疫机制的基因座,即在Logistic回归分析的基础上构建一个基于RONSA的信用评分模型:LR&RONSABased模型。最后通过样本数据和ROC曲线对该信用评分模型与LR模型进行实证对比检验。结果表明,LR&RONSABased模型具有更高的信用评分水平,可作为较理想的信用风险预测工具。
中文关键词: 信用评分  Logistic回归  人工智能
Abstract:In order to investigate feasibility and effectiveness of negative selection algorithm (NSA) in credit scoring, a new model named LR & RONSA Based model, which hybridizing Rset optimized negative selection algorithm (RONSA) with logistic regression, was proposed. Firstly, logistic regression selected the most relevant variables with the target variables into the model. Secondly, RONSA used the selected variables as the genes to detect “no-self”. Finally, with experiments on “German Credit set” and ROC curves, it was found that LR and RONSA Based model has better predict effect than the logistic regression model. It can be used as an ideal tool for credit risk prediction.
文章编号:201400671     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(71233006);中央高校基本科研业务费专项资金资助项目(2013-YB-030)
作者简介:
引用文本:
涂祥,杨琦峰,宋平,郑明辉,沈济南,杨兴忠.一种基于Logistic和RONSA的信用评分模型[J].工程科学与技术,2014,46(6):19-24.
Tu Xiang,Yang Qifneg,Song Ping,Zheng Minghui,Shen Ji’nan,Yang Xingzhong.ACreditScoringModelBasedonLogisticRegressionandRONSA[J].Advanced Engineering Sciences,2014,46(6):19-24.