###
工程科学与技术:2014,46(6):128-132
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
一种改进的双因子自适应FastICA算法
(海军航空工程学院七系)
AnImproved DoubleFactorAdaptiveFastICAAlgorithm
(1.No.7Dept.,NavalAeronauticalandAstronauticalUniv.;2.No.8Dept.,NavalAeronauticalandAstronauticalUniv.;3.No.9Dept.,NavalAeronauticalandAstronauticalUniv.)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1653次   下载 0
投稿时间:2014-05-15    修订日期:2014-09-07
中文摘要: 为解决快速独立分量分析算法(FastICA)对初值权值敏感的问题,提出一种双收敛因子FastICA算法(doubleconvergencefactorfastICA,DCF-FastICA)。该算法利用2个不同步长因子的FastICA算法进行组合,并通过梯度算法自适应调节两分离权值矩阵的组合系数,从而得到最优权值分离矩阵。理论分析与实验结果表明,DCF-FastICA算法比以往改进算法具有更明显的优势,不仅改善了初值权值敏感问题,而且可在几乎不损失分离精度的情况下,使平均分离速度比原算法提高近70%,迭代次数比原算法减少近80%。
中文关键词: FastICA  盲信号分离  独立分量分析
Abstract:A novel algorithm called double convergence factors FastICA (DCF-FastICA) was proposed to solve the problem that the FastICA algorithm is sensitive to the initial weights.Two FastICA algorithms with different step size factors were combined in this method,and the combination coefficient was adjusted using the gradient algorithm until the optimal separation matrix was obtained.Theoretical analysis and experimental simulation showed that the proposed algorithm can produce better separation result compared with the previous improved algorithms,the problem of initial weights sensitivity could be resolved with almost no loss of separation precision,the average separation speed is improved nearly 70% and the number of iterations reduced nearly 80% compared with the original FastICA algorithm.
文章编号:201400521     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(61102165)
作者简介:
引用文本:
尹洪伟,李国林,路翠华.一种改进的双因子自适应FastICA算法[J].工程科学与技术,2014,46(6):128-132.
Yin Hongwei,Li Guolin,Lu Cuihua.AnImproved DoubleFactorAdaptiveFastICAAlgorithm[J].Advanced Engineering Sciences,2014,46(6):128-132.