###
工程科学与技术:2014,46(2):105-110
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于图划分的网状高阶异构数据联合聚类算法
(哈尔滨工程大学 计算机科学与技术学院)
A Net-structure High-order Heterogeneous Data Co-clustering Algorithm Based on Graph Partitioning
(College of Computer Sci. and Technol.,Harbin Eng. Univ.)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1871次   下载 1
投稿时间:2013-08-27    修订日期:2013-11-05
中文摘要: 目前已有的高阶联合聚类算法主要集中于分析星型高阶异构数据,然而实际应用中,存在大量网状高阶异构数据。为了有效挖掘网状高阶异构数据内部隐藏的结构,提出一种基于图划分的高阶联合聚类算法(简称为GPHCC),该算法将网状高阶异构数据的聚类问题转化为多对二部图的最小正则割划分问题。为了降低计算复杂度,将此优化问题转化为半正定问题求解。实验结果表明GPHCC算法优于目前已有的5种2阶联合聚类算法和5种高阶联合聚类算法。
Abstract:Existing high-order co-clustering algorithm just can be suitable for analyzing star-structure high-order heterogeneous data.In order to analyze net-structure high-order heterogeneous data,a high-order co-clustering algorithm based on graph partitioning was proposed.The problem of high-order co-clustering was converted to optimal problem of graph partitioning of minimum normal cut.In order to reduce computational complexity,the optimal problem was converted to semi-definite problem.Experimental studies showed that the qualities of clustering results of GPHCC are superior five pair-wise coclustering algorithms and five high-order co-clustering algorithms.
文章编号:201300964     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(71272216;60903080;60093009);博士后科学基金资助项目(2012M5100480);国家科技支撑计划资助项目(2009BAH42B02;2012BAH08B02);中央高校基本科研业务费专项基金资助项目(HEUCFZ1212;HEUCFT1208)
作者简介:
引用文本:
杨欣欣,黄少滨.基于图划分的网状高阶异构数据联合聚类算法[J].工程科学与技术,2014,46(2):105-110.
Yang Xinxin,Huang Shaobin.A Net-structure High-order Heterogeneous Data Co-clustering Algorithm Based on Graph Partitioning[J].Advanced Engineering Sciences,2014,46(2):105-110.