###
工程科学与技术:2014,46(2):36-45
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于代理模型的水文模型参数多目标优化
(1.南京水利科学研究院 水文水资源与水利工程科学国家重点实验室;2.水利部 应对气候变化研究中心;3.中国矿业大学 资源与地球科学学院;4.中国科学院 地理科学与资源研究所 陆地水循环及地表过程重点实验室)
Multi-objective Optimization for Hydrological Models Using Surrogate Modeling
(1.State Key Lab. of Hydrology-Water Resources & Hydraulic Eng.,Nanjing Hydraulic Research Inst.;2.Research Center for Climate Change,Ministry of Water Resources;3.School of Resource and Earth Sci.,China Univ. of Mining & Technol.;4.Key Lab. of Water Cycle & Related Land Surface,Inst. of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2315次   下载 1
投稿时间:2013-07-30    修订日期:2013-11-14
中文摘要: 针对传统多目标优化算法存在计算复杂且效率偏低的问题,提出了一种基于代理模型的多目标优化方案。以淮河大坡岭水文站以上流域为例,采用多元自适应回归样条方法构建新安江模型参数与不同目标的响应曲面关系,进而估计参数的近似Pareto解集。采用4种目标函数(总水量误差系数、均方根误差、高水流量误差系数和低水流量误差系数)和4种模型精度评价指标(Nash-Sutcliffe效率系数、洪峰流量相对误差、径流深相对误差和峰现时间误差)评定模型优化结果,选择10场洪水过程和4种不确定性评价指标估计Pareto解集的模型预测区间特征。结果表明,代理模型可有效降低模型评估与优化过程中的计算消耗,为实现多目标优化的高效性奠定了基础。此外,不确定性分析结果也进一步验证了方法的有效性和结果的可靠性,为复杂模型参数优化与不确定性评估提供了参考。
Abstract:A new multi-objective optimization scheme based on surrogate modeling was proposed.Taking the Dapoling catchment as a case study, the response relationship between the parameter of Xin’anjiang model and different objectives was constructed based on multivariate adaptive regression splines,to estimate the Pareto sets or non-dominant solutions.Four objective functions of overall water balance error,root mean square error,relative error of peak flows,and low flows were used to optimize model parameters,and four evaluation criteria of Nash-Sutcliffe efficiency coefficient (NSE),relative error of peak flow and runoff volume (REPF and RERV),and time error of peak flow (TEPF) were selected to quantify the goodness-of-fit of observations against simulation model calculated values.In addition,four uncertainty criteria were applied to assess the hydrological uncertainty ranges with the Pareto solutions for ten flood events.Results demonstrated that the surrogate-modeling based method increases the feasibility of applying parameter optimization to computationally intensive simulation models via reducing the number of simulation runs.Simultaneously,uncertainty analysis results also revealed that the proposed method based on surrogate modeling is high efficiency and easy to operate.Thereby,the method is feasible for practical operations for complex simulation models in model calibration and uncertainty analysis.
文章编号:201300828     中图分类号:    文献标志码:
基金项目:国家“973”重点基础研究发展计划资助项目(2010CB951103);国家自然科学基金项目(41330854;L1322014);国家“十二五”科技支撑计划资助项目(2012BAC21B01;2012BAC19B03)
作者简介:
引用文本:
宋晓猛,张建云,孔凡哲,占车生.基于代理模型的水文模型参数多目标优化[J].工程科学与技术,2014,46(2):36-45.
Song Xiaomeng,Zhang Jianyun,Kong Fanzhe,Zhan Chesheng.Multi-objective Optimization for Hydrological Models Using Surrogate Modeling[J].Advanced Engineering Sciences,2014,46(2):36-45.