###
工程科学与技术:2013,45(6):170-175
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
机载液压油源系统非马尔科夫随机Petri网模型与时间参数识别
(南京航空航天大学 自动化学院)
Non-Markovian Stochastic Petri Nets Model and Identification for Onboard Hydraulic Oil System
(College of Automation Eng.,Nanjing Univ. of Aeronautics and Astronautics)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1324次   下载 2
投稿时间:2013-06-27    修订日期:2013-09-27
中文摘要: 机载液压油源系统的正常行执行时间服从正态分布和异常行为执行时间服从指数分布。Petri网模型处理确定行为,不能处理随机行为。随机Petri网(stochastic Petri nets,SPN)模型与确定-随机Petri网(DSPN)模型处理属于指数分布的行为,不能处理正态分布的行为。提出用正态-随机Petri网(NSPN)对机载液压油源系统建模,给出正态-随机Petri网模型的正态参数与指数分布参数的识别算法。仿真计算结果表明,计算的变迁时间参数值与系统实际运行时间参数值相比误差较小,验证了该方法的有效性。
Abstract:The onboard hydraulic oil source system has some fault-free behaviors with normal distributed periods and some faulty ones with exponentially distributed periods. The model of the onboard hydraulic oil source system was built by normal-stochastic PNs which combined firing periods with normal and exponential distribution. A method was proposed for the the firing periods parameters identification, which was the mean value mand the periods standard deviation σfor normal distribution or the exponential distribution mean value μ. The simulation results showed that the computing operating periods parameters were consistent with the real operating periods parameters.
文章编号:201300674     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(60674100)
作者简介:
引用文本:
刘久富,陈哲,王正谦,王志胜,杨忠.机载液压油源系统非马尔科夫随机Petri网模型与时间参数识别[J].工程科学与技术,2013,45(6):170-175.
Liu Jiufu,Chen Zhe,Wang Zhengqian,Wang Zhisheng,Yang Zhong.Non-Markovian Stochastic Petri Nets Model and Identification for Onboard Hydraulic Oil System[J].Advanced Engineering Sciences,2013,45(6):170-175.