###
DOI:
工程科学与技术:2013,45(Z1):118-122
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
解决高维多目标优化的分组进化算法
(海军航空工程学院研究生一队)
Group Divided Dimensional Reduction Evolutionary Algorithm for Multi-Objective Optimization
摘要
图/表
参考文献
相似文献
本文已被:浏览 1675次   下载 1
投稿时间:2012-12-18    修订日期:2013-03-12
中文摘要: 高维多目标优化是解决工程应用中的常见优化问题,传统的优化算法解决四维以上优化问题效果欠佳。针对该问题及当前高维多目标优化降维算法存在的不足,提出了分组进化算法。该方法将目标函数划分为若干组,分别进化求得各组的Pareto非支配解集,在各组非支配解集上应用SPEA2算法综合求取全体目标函数的Pareto最优解。对该方法的理论可行性进行了证明,重新定义了SPEA2算法中个体适应度。仿真实验,应用标准测试函数、优化性能指标同当前的高维多目标降维算法进行了比较,结果表明,该算法具有性能上的优势。
Abstract:Large dimensional multi-objective optimization is a common topic in engineering application. The conventional multi-objective optimization algorithms are inefficient in the problem of which the objectives number exceeds four. For the problems of conventional and the current dimensional reduction algorithms, a group divided dimensional reduction evolutionary algorithm is put forward. For this algorithm, the objective functions are divided into several groups, sub non-dominated set of every function group is built separately using SPEA2, then the non-dominated set of all objective functions is obtained basing on the sub non-dominated sets. The feasibility of this method is proved theoretically. For the sake of engineering application, individual fitness of SPEA2 is modified. In the simulation, this method is compared with current large dimensional reduction algorithms in terms of some metrics on two test problems. The test results show us the better performance of the algorithm.
文章编号:201201088     中图分类号:    文献标志码:
基金项目:光电控制技术重点实验室基金;航空科学联合基金资助项目
Author NameAffiliationE-mail
liu li jia  gohoo20000@gmail.com 
作者简介:
引用文本:
刘立佳.解决高维多目标优化的分组进化算法[J].工程科学与技术,2013,45(Z1):118-122.
liu li jia.Group Divided Dimensional Reduction Evolutionary Algorithm for Multi-Objective Optimization[J].Advanced Engineering Sciences,2013,45(Z1):118-122.