本文已被:浏览 1550次 下载 0次
投稿时间:2011-11-17 修订日期:2012-02-11
投稿时间:2011-11-17 修订日期:2012-02-11
中文摘要: 本文提出一种新型的曲波和小波的结合降噪方法,可有效降低合成孔径雷达(SAR)图像的斑点噪声,同时更好的保持图像边缘信息。本文采用16个方向检测模版扫描图像,根据检测规则区分边缘区域和均匀区域,同时标记图像边缘区域。分别使用改进软阈值的曲波降噪方法和小波降噪方法处理SAR图像的边缘区域和均匀区域。最后组合两种降噪结果,生成完整降噪图像。本文提出的结合方法和目前已经提出两种结合算法(联合滤波算法、自适应结合算法)相比,在灰度均值比、等效视数等指标上都有一定提升。实验结果表明,新方法既能更有效去除SAR图像斑点噪声,又能更好的保持图像边缘信息。
中文关键词: 曲波变换 小波变换 降噪 斑点噪声
Abstract: This paper presents a novel combination of Curvelet and Wavelet algorithm for SAR image speckle noise reduction. In this paper, Smooth areas and edges of SAR images are distinguished and labeled by 16 direction detection template. Respectively, using improved soft threshold curvelet and wavelet transform method to process Smooth areas and edges. Finally,a complete noise reduction image generated by the combination of two noise reduction result. Comparison with existing combination methods(CFA、ACM), new combination method have some improvement in various indicators, such as PM, ENL, etc. Experimental results show that the approach compared to existing methods that can not only effectively remove speckle noise, but also can better maintain the image edge information.
文章编号:201101006 中图分类号: 文献标志码:
基金项目:无
作者 | 单位 | |
李文博* | 四川大学电子信息学院 | 15902801513@163.com |
Author Name | Affiliation | |
Li Wen-Bo | College of Electronics and Information Engineering,Sichuan University | 15902801513@163.com |
作者简介:
引用文本:
李文博.基于Curvelet和Wavelet结合的SAR图像降噪方法[J].工程科学与技术,2012,44(Z1):145-149.
Li Wen-Bo.SAR Image Denoising Based on Combined Curvelet and Wavelet[J].Advanced Engineering Sciences,2012,44(Z1):145-149.
引用文本:
李文博.基于Curvelet和Wavelet结合的SAR图像降噪方法[J].工程科学与技术,2012,44(Z1):145-149.
Li Wen-Bo.SAR Image Denoising Based on Combined Curvelet and Wavelet[J].Advanced Engineering Sciences,2012,44(Z1):145-149.