###
DOI:
工程科学与技术:2012,44(3):153-158
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于连分式分解的1/2^n阶模拟分抗逼近电路设计
(1.四川大学 电子信息学院;2.四川大学 计算机学院;3.四川大学 电气信息学院)
Design of 1/2^nOrder Analog Fractance Approximation Circuit Based on Continued Fractions Decomposition
(1.School of Electronics and Info. Eng., Sichuan Univ.;2.School of Computer Sci., Sichuan Univ.;3.School of Electrical Eng. and Info., Sichuan Univ.)
摘要
图/表
参考文献
相似文献
附件
本文已被:浏览 2324次   下载 0
投稿时间:2011-09-06    修订日期:2012-01-06
中文摘要: 应用连分式理论设计1/2^n阶模拟分抗逼近电路。基于分数阶微积分理论,推导理想模拟分抗的网络函数。对1/2阶理想分抗的网络函数进行连分式分解,得到相应模拟分抗逼近电路的网络函数,并将其推广到1/2^n阶。采用无源RC器件设计电路的具体结构,并通过multisim10仿真。实验结果证明,由连分式分解理论设计的1/2^n阶分抗逼近电路具有良好的幅频响应和相频响应,能有效地逼近理想分抗。
Abstract:Continued fraction theory was applied to design the 1/2^n order analog fractance approximation circuit. Based on the fractional calculus theory, the network function of ideal fractance was derived. Continued fraction decomposition was applied to the network function of 1/2 order ideal fractance. The network function of the correponding analog fractance approximation circuit was obtained, and generalized to 1/2^n. The circuit structure was constructed by ordinary RC component, and simulated through multisim10. It was proved that the 1/2^norder analog fractance approximation circuit has good performance in both amplitude-frequency response and phase-frequency response, and it’s approximation to ideal fractance is effective.
文章编号:201100791     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(60972131)
作者简介:
引用文本:
刘彦,蒲亦非,沈晓东,周激流.基于连分式分解的1/2^n阶模拟分抗逼近电路设计[J].工程科学与技术,2012,44(3):153-158.
Liu Yan,Pu Yifei,Shen Xiaodong,Zhou Jiliu.Design of 1/2^nOrder Analog Fractance Approximation Circuit Based on Continued Fractions Decomposition[J].Advanced Engineering Sciences,2012,44(3):153-158.