本文已被:浏览 2948次 下载 0次
投稿时间:2009-10-15 修订日期:2010-02-05
投稿时间:2009-10-15 修订日期:2010-02-05
中文摘要: 针对传统高斯噪声去噪算法残余噪声较大的不足,根据噪声对图像视觉的影响,提出了基于像素邻域相关性的去噪算法。首先运用邻域像素的连续性判断像素点是否位于平滑区内;其次对非平滑区根据边缘和纹理的局部连续性运用形态学提取图像边缘和纹理进而定位噪声点;最后对平滑区内的噪声运用自适应邻域进行去噪处理,对非平滑区的噪声仅利用非平滑区的邻域进行平滑,实现了对高斯噪声先定位再去噪。经实验结果验证:与传统方法相比,该算法较好地抑制了图像平滑区内噪声,提高了去噪后图像的视觉效果。
Abstract:In order to overcome the shortcomings of traditional noise removal methods which the remaining noise is still large, an algorithm which was based on the local feature of the image was introduced for removing the Gaussian noise according to the impact of Gaussian noise on visual images. Firstly, the pixel was or wasn’t lie smoothing domain was estimated based on the local pixels’ continuity in the image. Secondly, the edge and texture of the image were extract by morphologic according to the local continuity properties of texture and edge, then the pixel contaminated with Gaussian noises was estimated. Lastly, the noise point in the smoothing domain was removed making use of the adaptive neighborhood, local smoothing for the edge or texture pixel. Comparing to the traditional method, this algorithm could preferably remove the noise and improved image visual effect.
keywords: Gaussian noise local feature morphologic noise removal
文章编号:200900919 中图分类号: 文献标志码:
基金项目:高等学校博士学科点专项科研基金资助项目(20060610021)
作者 | 单位 | |
琚生根 | 四川大学计算机学院 | jsg@scu.edu.cn |
何坤* | 四川大学计算机学院 | hekun@scu.edu.cn |
周激流 | 四川大学计算机学院 |
作者简介:
引用文本:
琚生根,何坤,周激流.基于图像邻域特性的高斯噪声去噪[J].工程科学与技术,2010,42(3):139-144.
Ju Shenggen,He Kun,Zhou Jiliu.Gaussian Noise Removal on the Local Feature of Image[J].Advanced Engineering Sciences,2010,42(3):139-144.
引用文本:
琚生根,何坤,周激流.基于图像邻域特性的高斯噪声去噪[J].工程科学与技术,2010,42(3):139-144.
Ju Shenggen,He Kun,Zhou Jiliu.Gaussian Noise Removal on the Local Feature of Image[J].Advanced Engineering Sciences,2010,42(3):139-144.