###
DOI:
工程科学与技术:2010,42(3):240-245
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于连续高斯密度混合HMM的刀具磨损状态监测
(四川大学制造科学与工程学院)
Tool Wear Condition Monitoring Based on Continuous Gaussian Mixture HMM
(1.School of Manufacturing Sci. and Eng., Sichuan Univ.;2.School of Manufacturing Sci. and Eng., Sichuan Univ)
摘要
图/表
参考文献
相似文献
本文已被:浏览 3753次   下载 0
投稿时间:2009-07-15    修订日期:2009-10-14
中文摘要: 针对端面铣刀磨损状态的识别问题,根据隐式马尔可夫模型(HMM)具有良好的模式分类能力,提出了基于连续高斯密度混合HMM(CHMM)的刀具磨损状态监测系统。以铣削力作为监测信号,应用小波包理论对铣削力信号进行分析和消噪处理,并提取信号的能量特征作为CHMM的输入向量,训练CHMM模型,再用训练好的模型对未知的刀具磨损状态进行监测与识别,实验结果表明该模型可以对刀具磨损状态进行准确的识别,且所需训练样本数较少,对刀具状态的智能监测具有很好的实际意义。
Abstract:Aiming at the problem of the identification of cutting tool wear condition, and according to the merit of Hidden Markov Model (HMM) with perfect classifying ability, the system of the tool wear condition monitoring based on continuous Gaussian mixture HMM (CHMM) was presented. With the milling force as the monitoring signal, the wavelet package theory was adopted to analyze and de noise the milling force signal, and extracts energy feature of the signal as import vectors of CHMM, trains CHMM.Then the unknown state of tool wear was monitored and identified using the trained model. The results of the experiment indicated that the model can exactly recognize the tool wear state and need small training samples, has significant realistic meaning to tool intelligent monitoring.
文章编号:200900679     中图分类号:    文献标志码:
基金项目:其它
作者简介:
引用文本:
王玫,吕俊杰,王杰.基于连续高斯密度混合HMM的刀具磨损状态监测[J].工程科学与技术,2010,42(3):240-245.
Wang Mei,LV Jun jie,Wang Jie.Tool Wear Condition Monitoring Based on Continuous Gaussian Mixture HMM[J].Advanced Engineering Sciences,2010,42(3):240-245.