###
DOI:
工程科学与技术:2010,42(3):84-88
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于二阶拉格朗日插值求解动力响应的逐步积分法
(四川大学 建筑与环境学院)
A New Step-by-step Integration Method Based on Quadratic Lagrangian Interpolation for Dynamic Response
(School of Architecture and Environment,Sichuan Univ.)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2484次   下载 10
投稿时间:2009-06-25    修订日期:2009-12-22
中文摘要: 为了求解结构动力学响应,提出了一种新的逐步积分法。通过二阶拉格朗日插值在局部时间域上对位移进行离散,并给出逐步递推计算格式;采用参数θ控制算法的稳定性和计算精度。该方法具有稳定性好、二次精度、自起步的、计算格式简单的特点。通过选取不同的θ值与Newmark法、Wilson法、精细积分法的数值结果对比分析表明:该方法是正确而又可靠的。
Abstract:In order to obtain structural dynamic response,a new step-by-step integration method was presented. Thismethod was introduced by quadratic Lagrangian interpolation of the nodal displacements within local time domain. Single parameters θ was varied to obtain good stability and accuracy. This method is characterized with good stability, quadric precision, self-starting and simple numerical format. Compared with the methods of Newmark,Wilson, and precise integration at different θ, this method is more accurate and reliable.
文章编号:200900607     中图分类号:    文献标志码:
基金项目:教育部博士点基金资助项目(200806100044);教育部创新团队项目(IRT0640)
作者简介:
引用文本:
袁晓彬,王清远,游翔,方冬慧.基于二阶拉格朗日插值求解动力响应的逐步积分法[J].工程科学与技术,2010,42(3):84-88.
Yuan Xiaobin,Wang Qingyuan,You Xiang,Fang Donghui.A New Step-by-step Integration Method Based on Quadratic Lagrangian Interpolation for Dynamic Response[J].Advanced Engineering Sciences,2010,42(3):84-88.