###
DOI:
工程科学与技术:2008,40(5):121-124
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于RFID与基因表达式编程的经济统计时序挖掘
(1.四川大学 电气信息学院,四川 成都610065;2.四川大学 经济学院,四川 成都610064;3.西南油气田分公司,四川 成都610051)
RFID and Economy Statistical Time Sequence Data MiningBased on Gene Expression
摘要
图/表
参考文献
相似文献
本文已被:浏览 2245次   下载 204
    
中文摘要: 为解决基因表达式编程(GEP)在符号回归、RFID分类及经济领域中对时序数据的挖掘速度和精度还不够的问题,提出了统计基因、统计染色体和统计时序-适应度的定义,并针对传统GEP经济时序模型进行了综合改进;提出了新颖的单变量时序和多变量时序挖掘算法,提高了GEP统计时序挖掘的速度和精度;实验表明,与传统GEP、单变量GEP时序算法相比,多变量GEP时序算法挖掘速度快,其预测精度比单变量时序算法高出5%以上。该算法同样适用于RFID以及其他经济系统中的时序数据挖掘。
Abstract:In order to solve the problem that Gene Expression Programming (GEP) has not still turn up trumps to the mining rapidity and precision of RFID and Economy Statistical Time Sequence Data in symbol regression and class domain, the definition of Statistical-Gene, Statistical-Chromosome, Statistical fitness and the integration amelioration to traditional GEP time Sequence model were proposed. The novel mining algorithm of single-variable and multi-variable time sequence mining algorithm were given to heighten the mining rapidity and precision of GEP economy time sequence model. The effectiveness of new algorithm was demonstrated by extensive experiments and the result showed that the mining rapidity of multi-variable time sequence mining algorithm was rapidness and the forecast precision was heighten up 5% compared with traditional GEP and single variable GEP time sequence mining algorithm. New algorithm was appropriate for RFID and other economy system as well.
文章编号:20080522     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(60473071);四川省科技攻关资助项目(2006Z01-027);四川省科技支撑计划资助项目(07GG006-025)
作者简介:
引用文本:
刘齐宏,李天德,周志斌.基于RFID与基因表达式编程的经济统计时序挖掘[J].工程科学与技术,2008,40(5):121-124.
.RFID and Economy Statistical Time Sequence Data MiningBased on Gene Expression[J].Advanced Engineering Sciences,2008,40(5):121-124.