单层楼阁式木架动力与耗能性能试验研究

孙祚帅 贾良玖 张宏泰 万佳 项平

孙祚帅, 贾良玖, 张宏泰, 等. 单层楼阁式木架动力与耗能性能试验研究 [J]. 工程科学与技术, 2023, 55(5): 23-30. doi: 10.15961/j.jsuese.202300047
引用本文: 孙祚帅, 贾良玖, 张宏泰, 等. 单层楼阁式木架动力与耗能性能试验研究 [J]. 工程科学与技术, 2023, 55(5): 23-30. doi: 10.15961/j.jsuese.202300047
SUN Zuoshuai, JIA Liangjiu, ZHANG Hongtai, et al. Dynamic and Energy Dissipation Performance of Single-story Pavilion-type Timber Frame [J]. Advanced Engineering Sciences, 2023, 55(5): 23-30. doi: 10.15961/j.jsuese.202300047
Citation: SUN Zuoshuai, JIA Liangjiu, ZHANG Hongtai, et al. Dynamic and Energy Dissipation Performance of Single-story Pavilion-type Timber Frame [J]. Advanced Engineering Sciences, 2023, 55(5): 23-30. doi: 10.15961/j.jsuese.202300047

单层楼阁式木架动力与耗能性能试验研究

基金项目: 国家自然科学基金项目(52178499;51978529;52278525)
详细信息
    • 收稿日期:  2023-01-14
    • 网络出版时间:  2023-06-27 05:11:23
  • 作者简介:

    孙祚帅(1994—),男,博士生. 研究方向:摇摆结构及结构减隔震. E-mail:2010289@tongji.edu.cn

    通信作者:

    贾良玖, 副教授,E-mail: lj_jia@tongji.edu.cn

  • 中图分类号: TU366

Dynamic and Energy Dissipation Performance of Single-story Pavilion-type Timber Frame

  • 摘要: 中国传统楼阁式木构由柱基层、柱架层、铺作层和屋架层组成,地震作用下各结构层间出现的非线性响应表明了楼阁式木构是一个高度非线性的结构体系,其中蕴含了丰富的减隔震机理,而整体楼阁式木架的抗震机理复杂且各结构层协调工作机制、动力及耗能性能尚未被完全揭示。为了探究楼阁式木架的动力及耗能性能,对1/16缩尺的观音阁单层木架简化模型进行振动台试验。将3条地震波缩尺并输入调整后地震动峰值加速度(PGA),分析木架在单向地震激励下的动力响应。结果表明:当输入地震动加速度较小时,3条地震波作用下木架响应都较小;当输入地震动加速度较大时,3条地震波作用下木架均会出现柱摇摆、柱脚滑移和柱脚提离等结构响应;木架层间位移角主要由柱架层提供,且随着PGA增大,铺作层层间位移占比减小,柱架层层间位移占比增大。基于试件位移响应和加速度响应,分析木架表现出的滞回特性,结果表明,在柱摇摆前滞回曲线呈现较大初始刚度,在柱摇摆后滞回曲线呈现2阶刚度,在柱脚提离后滞回曲线呈现负刚度。对不同地震激励下的木架累积耗能及耗能占比进行分析,结果表明:随PGA增大,柱脚摩擦滑移耗能占比越大;且PGA越大,柱架层摇摆耗能占比越大,铺作层耗能占比越小。

     

    Abstract: Traditional Chinese pavilion-type timber structure consists of a column base layer, column frame layer, paving layer and roof truss layer, of which the response of each layer under seismic waves indicates that the pavilion-type timber frame is a highly non-linear structural system, which contains a wealth of seismic mitigation and isolation mechanism. The seismic mechanism of the overall pavilion-type timber frame is sophisticated and the coordinated working mechanism, dynamic and energy dissipation performance have not been fully revealed. To investigate the dynamic and energy dissipation performance of the pavilion-type timber frame, a shaking table test of a 1/16 scaled simplified Guanyin Pavilion timber frame was carried out based on the previous study. Three seismic waves were scaled down and adjusted for peak ground acceleration (PGA) to analyze the dynamic response of the timber frame under unidirectional seismic excitation. The test results show that the response of the timber frame is little with little input acceleration, and the structural response, such as column rocking, column base sliding and column base uplifting occur with large input acceleration. The inter-story drift is mainly provided by the column frame layer, the inter-story displacement of the column frame layer decreases and the inter-story displacement of the paving layer increases as the PGA increases. Based on the displacement and acceleration responses of the specimen, the hysteresis characteristics of the timber frame are analyzed. Hysteretic curves of the timber frame present large initial stiffness before column rocking, as well as small positive second-stiffness after column rocking and negative stiffness when column base uplifting occurs. At the same time, the cumulative energy dissipation and energy dissipation proportion of each part of the specimen under different seismic excitations are analyzed. With an increasing PGA, the column base sliding becomes the main energy dissipation mode, and the greater the PGA, the more energy dissipation proportion of the column rocking of the column frame layer and the less energy dissipation proportion of the paving layer are.

     

  • 中国现存传统楼阁式木构较少,代表性建筑包括应县木塔和天津蓟县观音阁。日本的五重塔和三重塔也属于楼阁式木构,其建造技术在隋唐时期从中国传到日本。传统楼阁式木构经受了多次强震强风等自然灾害后依然保存下来,表明其具有独特而优越的防震机制。典型传统楼阁式木架可分为4层:柱基层、柱架层、铺作层和屋架层(附加质量层)[1]。柱通常浮搁于础石上,当受到较大的侧向力时,柱脚可绕础石滑动或提离;阑额和柱通过榫卯连接[2],这些连接通常可滑动和摇摆,既不是刚性连接,也不是半刚性连接,连接的刚度和承载力通常比阑额和柱的刚度和承载力小[34],允许梁和木柱在一定程度上转动和变形。连接构造使得楼阁式木架在地震时可通过柱摇摆、柱脚滑移和构件间的摩擦实现卓越的防震性能。同时,自重可提供恢复力,在一定位移和变形范围内实现结构自复位,从而使楼阁式木架具有一定的自复位特性。如今,受自然和人为因素等影响,中国传统楼阁式木构面临着许多保护和修缮问题亟待解决。

    日本学者对五重塔的研究已持续一个世纪之久,且已建立了较为完善的五重塔、三重塔数据库。Chiba等[5]进行了古代五重塔的1/5缩尺模型振动台试验。Masaki等[6]对木架足尺模型进行了静力试验和振动台试验,指出木架恢复力主要由梁的抵抗弯矩和柱摇摆时的自重提供,同时证明了木架主要依靠重力自复位。国内对楼阁式木架的研究主要涉及木材材性[7]、榫卯连接[8]、斗栱铺作和整体木架[9]。王明谦等[10]为预测木材复杂的受力行为,建立了木材3维弹塑性损伤本构模型。基于燕尾榫试验研究,姚侃等[11]提出燕尾榫的最终破坏模式为榫头从榫眼中拔出,并给出了燕尾榫节点弯矩–转角关系理论计算公式。隋䶮等[12]对透榫和燕尾榫木架模型进行了水平低周反复加载,得到了透榫节点和燕尾榫节点滞回曲线,试验结果表明木架具有较好的变形能力。此外,薛建阳等[13]对有无填充墙板的穿斗式木架房屋进行了振动台试验研究。宋晓滨等[14]以7层传统楼阁式木塔为研究对象,对 1/5 缩尺模型进行了振动台试验,验证了木塔良好的抗震性能且发现木塔存在固接状态和摇摆状态的切换。姚侃等[15]在分析历史建筑柱基和柱连接形式与特点的基础上建立了柱脚滑动摩擦隔震模型,给出了柱脚滑移准则。Fang等[16]对木架动力特性进行了理论研究,为木架变形机理研究奠定了基础。Wan等[17]的研究丰富了木架摇摆理论,将木架变形划分为4个阶段,并利用有限元模型进行了验证。

    Xiang等[18]受楼阁式木架摇摆响应启发进行的多重摇摆钢框架研究,将现代钢结构与古代木结构结合,阐明了多重摇摆钢框架机理和响应[19]。然而,楼阁式木架具有高度非线性,变形机制比单一的摇摆结构更为复杂[20]。目前,多数研究集中于对木架构件独立抗震性能研究,包括叉柱造斗栱节点竖向荷载受力试验研究[21]、宋式斗栱节点水平荷载试验研究[22]、斗栱节点滞回特性和滞回模型研究[23]、榫卯节点尺寸效应试验研究[24]、榫卯节点转动性能及滞回模型研究[25]、整体木架抗震试验研究[26]、整体木架抗震机理研究[27]及滞回性能研究[28],并建立了木架损伤分析模[29]。当前针对具有4个结构层的楼阁式木架整体抗震性能研究较少且主要为分层独立研究,同时对各层的协调工作机制、动力及耗能性能未详细阐明,相关研究不能完全反映楼阁式木架整体性能。本文以典型3层木构楼阁为原型,在不考虑木材损伤情况下对单层1/16缩尺楼阁式木架进行了振动台试验;基于楼阁式木架地震力作用下的变形及运动状态理论分析结果[1],研究单向地震激励下木架响应,并进一步分析木架的滞回曲线和累积耗能机理,为传统楼阁式木架抗震机理的研究提供理论和试验研究基础。

    原型结构为始建于公元984年的天津蓟县观音阁,高23 m,是一座3层木构楼阁,建筑尺寸参考文献[30]。其中:第1层与第3层为明层,除柱脚连接形式外,上部构造一致;第2层为暗层。第1层木架柱脚与柱基层为浮搁式连接,第3层木架柱脚与第2层铺作层为叉柱连接,第3层木架柱脚与下部结构连接形式与第2层木架一致。为了研究柱基层与柱架层复合抗震性能及浮搁式柱脚连接形式的工作机制,同时综合考虑振动台加载能力和台面尺寸,选择第1层明层对应的楼阁式木架中间跨为研究对象,设计并制作1/16的缩尺模型。缩尺模型相似比见表1。为了阐明这种复杂体系的动态响应,试件制作尽量与原型结构构造一致。鉴于小模型软木加工难度大,试件用材为核桃木(硬木),榫卯节点基本紧配。

    表  1  缩尺模型相似比
    Table  1  Similarity factors of scaled model
    参数 相似关系 相似比
    长度 $ {S} _{l} $ 1/16
    应力 $ {S} _{\sigma } $ 1
    加速度 $ {S} _{a} $ 1
    质量 ${S} _{\sigma }\cdot{ {S} _{l} ^{2}}/{S} _{a}$ 1/256
    时间 ${ {S} _{l} ^{0.5}}\cdot{ {S} _{a} ^{-0.5} }$ 1/4

    试件构造及试验布置如图1所示。由图1可见:铺作层和柱架层与原型结构构造一致;柱基层采用础石,础石材料为青石,尺寸为100 mm× 100 mm× 30 mm,保证试验过程中柱脚滑移不超过础石尺寸;柱础间摩擦系数为0.3。柱架层及上部重量采用附加配重布置,根据配重同木架质量比与原型结构质量比一致来计算配重,并将配重固定在铺作层上,柱架层承接铺作层与础石,阑额与柱为榫卯节点连接,柱脚浮搁于础石上,础石通过夹具固定在振动台台座上。

    图  1  试件构造及试验布置
    Fig.  1  Overview of specimen structure and test setup
    下载: 全尺寸图片

    缩尺试件柱架层平面尺寸为255 mm× 180 mm,柱高222 mm,铺作层层高85 mm。由于木销作用,水平地震力下阑额只发生水平平动且与柱无相对水平位移,柱可绕榫卯节点转动,且榫卯节点最大正向转动角和最大负向转动角受试件加工精度影响有所不同。基于试验测试,试件正向柱架层层间位移角达到0.95%时榫卯节点卡住,负向达到1.13%时榫卯节点卡住。

    选取PSL180波、CAP000波和FRN224波作为试验输入的单向地震动激励,地震波信息见表2,加载方向如图1(a)所示运动方向。

    表  2  输入地震波信息
    Table  2  Summary of input ground motions
    地震波 简称 卓越周期/s
    San Fernando PSL180 0.27
    Northern Calif-05 FRN224 0.84
    Loma Prieta CAP000 1.32

    自由摇摆的刚体的频率与响应的位移振幅有关,位移导致频率的巨大变化,故选取3条具有不同卓越周期的地震波阐明这复杂体系的动态响应。由于本文进行的是楼阁式木架原理性试验,为保证缩尺模型与原型结构非线性地震响应相似性,试件缩尺比对地震波时间按照1/4进行缩尺。分别调整地震动峰值加速度(PGA)至0.07g、0.20g和0.40g对应小、中、大震;将PSL180波PGA调幅至0.60g的工况进一步研究试件响应。3条地震波加速度反应谱及平均值与规范谱的对比如图2所示。

    图  2  地震波加速度反应谱
    Fig.  2  Acceleration response spectrum of seismic waves
    下载: 全尺寸图片

    每次地震波加载前需保证试件初始位置一致,利用水平尺校准柱与础石垂直且加载方向上每2根柱在同一平面内,并在础石上做出位置标记。在关键位置布置靶点并利用图1(b)所示的高速相机进行靶点跟踪,即通过DIC(Digital Image Correlation)进行数据采集,设置相机采集频率为100 Hz,可获取靶点处位移及加速度等数据。

    Sun等[1]提出柱摇摆、柱脚滑移和柱脚提离等运动状态的判别公式为:

    $$ {a}_{{x}}/g\ge \mathrm{tan}\;\alpha $$ (1)
    $$ {a}_{{x}}/g\ge \mu $$ (2)
    $$ {a}_{{x}}/g\ge (S+B)/2H $$ (3)

    式中:ax为阑额水平加速度;g为重力加速度;α为柱重心和柱脚边缘连线与柱轴线夹角;μ为柱底与础石间的静摩擦系数,通过摩擦角法得到实测值为0.3;S为柱脚抬起高度;B为柱半径;2H为柱高。分析坐标系是以振动台为参考基点的非惯性系。

    输入PSL180波、CAP000波和FRN224波,试验木架均出现了柱摇摆、柱脚滑移和柱脚提离等关键运动状态,且均适用于判别式(1)~(3);同时,3条地震波定性分析结果一致,因此在考虑试验加载工况后,以PSL180地震波为例进行阐述。PSL180地震波激励时,0.07g工况下,整个时程内试件响应较小,式(1)~(3)均不满足,柱无法起摆的同时不产生柱脚滑移且无柱脚提离;0.20g工况下,部分时刻地震响应满足式(1),发生柱摇摆,但在峰值加速度时刻不满足式(2),因此无柱脚滑移;0.40g工况下,同时满足式(1)和(2),柱可摇摆且柱脚产生滑移,柱脚滑移现象如图3(a)所示;进一步分析0.60g工况下,试件出现柱摇摆、柱脚滑移和柱脚提离现象,柱脚提离现象如图3(b)所示,即整体木架摇摆。

    图  3  试验现象
    Fig.  3  Test phenomenon
    下载: 全尺寸图片

    PSL180地震波0.60g工况下的试件加速度响应和层间位移角响应如图4所示,多个时刻的加速度响应满足式(1)和(2),即可产生柱摇摆和柱脚滑移,同时在峰值加速度附近满足式(3)。图4中,θlim为榫卯卡住时木架层间位移角。同样以PSL180为例进行分析:当PGA≤0.40g时,榫卯节点不会卡住,也不会产生柱脚提离现象;当PGA达到0.60g时,层间位移角达到榫卯节点卡住条件后出现柱脚提离现象。榫卯节点卡住前,发生柱摇摆;榫卯节点卡住后,发生木架摇摆,即受拉侧柱脚提离。当水平地震力较大时,柱摇摆位移对应的摇摆角达到榫卯节点间隙容许值,水平地震力再增大后不再产生柱摇摆位移,此时判定榫卯节点已卡住。榫卯节点是否卡住是判别柱脚提离现象的关键,当榫卯节点卡住且满足式(3)时,才会出现木架受拉侧柱脚提离现象。图4(a)中有3个典型时间点满足式(3),对应于图4(b)位移响应时,正向2个时间点满足式(3)且满足榫卯节点卡住的条件,因此位移正向时产生柱脚提离;负向1个时间点满足式(3)但并不满足榫卯节点卡住的条件,因此位移负向时不产生柱脚提离。

    图  4  PSL180地震波PGA 0.60g工况响应
    Fig.  4  Response under seismic excitation PSL180 with PGA of 0.60g
    下载: 全尺寸图片

    3条地震波作用下木架铺作层与柱架层层间位移数据见表3,其中,柱架层层间位移为阑额水平位移与柱脚水平位移的差值,铺作层层间位移为顶梁水平位移与阑额水平位移的差值。由表3可知,地震作用下,铺作层层间位移较小,柱架层层间位移较大,且随着PGA增大,铺作层层间位移占比减小,柱架层层间位移占比增大。试验结果表明,木架水平位移主要由柱架层贡献,因此本文仅分析柱架层的位移响应。PSL180地震波激励下不同PGA的对应柱架层层间位移角及对应最大层间位移角贡献如图5所示。

    表  3  输入3条地震波作用下木架位移响应
    Table  3  Displacement response of timber frame under 3 input seismic waves
    地震波 PGA 柱架层层间位移/mm 铺作层层间位移/mm
    PSL180 0.07g 0.26 0.06
    0.20g 1.47 0.08
    0.40g 2.01 0.09
    0.60g 3.69 0.10
    CAP000 0.07g 0.55 0.09
    0.20g 1.95 0.15
    0.40g 3.00 0.22
    FRN224 0.07g 0.39 0.07
    0.20g 1.71 0.11
    0.40g 2.54 0.13
    图  5  PSL180波不同PGA对应位移响应
    Fig.  5  Displacement response under seismic excitation PSL180 with different PGAs
    下载: 全尺寸图片

    图5可见:PGA为0.60g时,最大层间位移角主要由柱摇摆贡献,占比60%,柱脚提离贡献占比40%。试验中,正向柱架层层间位移角达到0.95%时榫卯节点卡住,负向达到1.13%时榫卯节点卡住。榫卯节点卡住前发生柱摇摆,一旦榫卯节点卡住,柱摇摆不再发生。由试验结果可知,在不考虑材料塑性的前提下,柱摇摆和柱脚提离是中、大震下楼阁式木架位移响应的主要模式,且榫卯节点卡住与否是楼阁式木架状态切换的关键影响因素。

    PSL180地震波激励下不同工况柱架层滞回曲线如图6所示。图6中:横坐标为柱架层层间位移角,定义为阑额绝对位移–柱脚绝对位移间的差值与柱高的比值;纵坐标为阑额处水平地震力Fe = max,其中,m为楼层质量。由图6可见:输入激励较大的0.40g和0.60g工况下,滞回曲线饱满;输入激励较小的0.07g和0.20g工况下,滞回曲线包围面积较小。PGA为0.07g时,试件响应较小,滞回曲线近似表现为线弹性曲线;PGA为0.20g和0.40g时,出现柱摇摆,滞回曲线包络线近似为双线性,柱摇摆后表现为减小的2阶刚度;PGA为0.60g时,柱摇摆和柱脚提离会相继发生,大层间位移角下滞回曲线包络线表现为柱脚提离后的负刚度。

    图  6  PSL180波不同PGA对应柱架层滞回曲线
    Fig.  6  Hysteretic curves of timber frame under seismic excitation PSL180 with different PGAs
    下载: 全尺寸图片

    根据0.60g工况的黑色骨架曲线线形,计算3段刚度k1k2k3,结果见表4。由表4可知:2阶刚度k2约为初始刚度k1的18%;柱脚提离后,滞回曲线呈现负刚度k3,约为初始刚度k1的20%。

    表  4  PSL180地震波不同PGA对应结构刚度值
    Table  4  Structural stiffness under seismic excitation PSL180 with different PGAs
    N·mm–1
    k1 k2 k3
    29.38 5.35 6.08

    柱脚提离后柱架层层间位移角、阑额水平地震力和柱脚提离高度如图7所示。阴影部分表明柱脚提离后,柱架层层间位移角增大,水平地震力减小,对应滞回曲线的负刚度段。

    图  7  柱脚提离后柱架层响应
    Fig.  7  Response of timber frame after column uplifting
    下载: 全尺寸图片

    滞回曲线面积表示试件累积耗能量,按试件各部分滞回曲线面积计算PSL180地震波各工况累积耗能时程,分析试件各部分累积耗能如图8所示。图8中,柱架层摇摆及榫卯节点摩擦耗能、铺作层构件抬落及摩擦耗能和柱脚滑移耗能为3个耗能机制。

    图  8  PSL180波不同PGA对应各部分累积耗能
    Fig.  8  Cumulative energy dissipation of components under seismic excitation PSL180 with different PGAs
    下载: 全尺寸图片

    图8可见,随PGA增大,各部分累积耗能增大,试件总累积耗能增大。PGA为0.07g和0.20g时,未发生柱脚滑移,柱脚滑移累积耗能近似为0;PGA为0.40g和0.60g时,发生了柱脚滑移,且柱脚滑移耗能占比最大,见表5。进一步分析柱架层和铺作层累积耗能:0.07g工况下试件响应小,理论上不会产生各种非线性响应,累积耗能近似为0,而实际柱底不平整也会导致在较小地震动下柱架层产生位移;0.20g工况下,柱架层仅在部分加速度较大时刻发生柱摇摆,并伴随榫卯节点组件间的摩擦及相对转动,而铺作层通过斗栱各构件间的摩擦及复位行为耗能,铺作层累积耗能大于柱架层累积耗能,且铺作层耗能占比最大;0.40g和0.60g工况下,柱架层摇摆、榫卯摩擦及柱脚提离等非线性响应导致柱架层累积耗能大于铺作层累积耗能,且当PGA≥0.40g时,PGA越大,柱架层累积耗能占比越大,铺作层累积耗能占比越小。

    表  5  不同PGA地震波作用下各部分累积耗能及占比
    Table  5  Cumulative energy dissipation and proportion of energy dissipation of components under input seismic waves with different PGAs
    地震波 PGA 柱脚滑移 柱架层 铺作层 合计累积耗能/
    (N·mm)
    累积耗能/(N·mm) 耗能占比/% 累积耗能/(N·mm) 耗能占比/% 累积耗能/(N·mm) 耗能占比/%
    PSL180 0.07g 0.27 1.49 11.25 62.09 6.60 36.42 18.12
    0.20g 0.46 0.78 26.12 44.11 32.63 55.11 59.21
    0.40g 87.43 39.59 72.53 32.84 60.88 27.57 220.84
    0.60g 129.79 42.95 106.76 35.33 65.63 21.72 302.18
    CAP000 0.07g 0.31 1.66 11.56 61.72 6.86 36.63 18.73
    0.20g 0.75 1.11 29.65 43.85 37.21 55.04 67.61
    0.40g 100.28 39.91 88.30 35.14 62.67 24.94 251.25
    FRN224 0.07g 0.28 1.47 11.39 59.70 7.41 38.83 19.08
    0.20g 0.44 0.70 28.08 44.78 34.23 54.58 62.71
    0.40g 93.25 38.56 79.63 32.93 68.95 28.51 241.83

    1)本文通过缩尺振动台试验研究了楼阁式木架的非线性动力响应及耗能性能。随输入地震波加速度增大,楼阁式木架会发生柱摇摆、柱脚滑移和柱脚提离等非线性响应;在不考虑结构自身变形的情况下,榫卯节点卡住前,柱架层层间位移由柱摇摆模式控制,榫卯节点卡住后,柱架层层间位移由柱摇摆和柱脚提离两种模式共同控制。

    2)柱摇摆前,滞回曲线包络线呈现较大初始刚度;柱摇摆后,滞回曲线包络线呈现2阶刚度,且2阶刚度约为初始刚度的18%;柱脚提离后,滞回曲线呈现负刚度,约为初始刚度的20%。

    3)当PGA≤0.20g时,楼阁式木架各部分累积耗能较小,框架响应较小;当PGA≥0.40g时,柱摇摆、柱脚滑移和柱脚提离等非线性响应明显,柱脚摩擦滑移成为最主要的耗能形式;PGA越大,柱架层耗能占比越大,铺作层耗能占比越小。

    由于试验中质量缩比导致木材未发生塑性变形,后续将进一步开展大型振动台试验,深入研究缩比效应以及多层楼阁式木架的减隔震机理,为中国传统楼阁式木架古建的保护、修缮以及重建提供技术依据。

  • 图  1   试件构造及试验布置

    Fig.  1   Overview of specimen structure and test setup

    下载: 全尺寸图片

    图  2   地震波加速度反应谱

    Fig.  2   Acceleration response spectrum of seismic waves

    下载: 全尺寸图片

    图  3   试验现象

    Fig.  3   Test phenomenon

    下载: 全尺寸图片

    图  4   PSL180地震波PGA 0.60g工况响应

    Fig.  4   Response under seismic excitation PSL180 with PGA of 0.60g

    下载: 全尺寸图片

    图  5   PSL180波不同PGA对应位移响应

    Fig.  5   Displacement response under seismic excitation PSL180 with different PGAs

    下载: 全尺寸图片

    图  6   PSL180波不同PGA对应柱架层滞回曲线

    Fig.  6   Hysteretic curves of timber frame under seismic excitation PSL180 with different PGAs

    下载: 全尺寸图片

    图  7   柱脚提离后柱架层响应

    Fig.  7   Response of timber frame after column uplifting

    下载: 全尺寸图片

    图  8   PSL180波不同PGA对应各部分累积耗能

    Fig.  8   Cumulative energy dissipation of components under seismic excitation PSL180 with different PGAs

    下载: 全尺寸图片

    表  1   缩尺模型相似比

    Table  1   Similarity factors of scaled model

    参数 相似关系 相似比
    长度 $ {S} _{l} $ 1/16
    应力 $ {S} _{\sigma } $ 1
    加速度 $ {S} _{a} $ 1
    质量 ${S} _{\sigma }\cdot{ {S} _{l} ^{2}}/{S} _{a}$ 1/256
    时间 ${ {S} _{l} ^{0.5}}\cdot{ {S} _{a} ^{-0.5} }$ 1/4

    表  2   输入地震波信息

    Table  2   Summary of input ground motions

    地震波 简称 卓越周期/s
    San Fernando PSL180 0.27
    Northern Calif-05 FRN224 0.84
    Loma Prieta CAP000 1.32

    表  3   输入3条地震波作用下木架位移响应

    Table  3   Displacement response of timber frame under 3 input seismic waves

    地震波 PGA 柱架层层间位移/mm 铺作层层间位移/mm
    PSL180 0.07g 0.26 0.06
    0.20g 1.47 0.08
    0.40g 2.01 0.09
    0.60g 3.69 0.10
    CAP000 0.07g 0.55 0.09
    0.20g 1.95 0.15
    0.40g 3.00 0.22
    FRN224 0.07g 0.39 0.07
    0.20g 1.71 0.11
    0.40g 2.54 0.13

    表  4   PSL180地震波不同PGA对应结构刚度值

    Table  4   Structural stiffness under seismic excitation PSL180 with different PGAs

    N·mm–1
    k1 k2 k3
    29.38 5.35 6.08

    表  5   不同PGA地震波作用下各部分累积耗能及占比

    Table  5   Cumulative energy dissipation and proportion of energy dissipation of components under input seismic waves with different PGAs

    地震波 PGA 柱脚滑移 柱架层 铺作层 合计累积耗能/
    (N·mm)
    累积耗能/(N·mm) 耗能占比/% 累积耗能/(N·mm) 耗能占比/% 累积耗能/(N·mm) 耗能占比/%
    PSL180 0.07g 0.27 1.49 11.25 62.09 6.60 36.42 18.12
    0.20g 0.46 0.78 26.12 44.11 32.63 55.11 59.21
    0.40g 87.43 39.59 72.53 32.84 60.88 27.57 220.84
    0.60g 129.79 42.95 106.76 35.33 65.63 21.72 302.18
    CAP000 0.07g 0.31 1.66 11.56 61.72 6.86 36.63 18.73
    0.20g 0.75 1.11 29.65 43.85 37.21 55.04 67.61
    0.40g 100.28 39.91 88.30 35.14 62.67 24.94 251.25
    FRN224 0.07g 0.28 1.47 11.39 59.70 7.41 38.83 19.08
    0.20g 0.44 0.70 28.08 44.78 34.23 54.58 62.71
    0.40g 93.25 38.56 79.63 32.93 68.95 28.51 241.83
  • [1] Sun Zuoshuai,Xiang Ping,Jia Liangjiu,et al.Seismic response and kinematic mechanisms of single-story pavilion-type timber frame based on shaking table test[J].Structures,2022,45:1701–1716. doi: 10.1016/j.istruc.2022.10.016
    [2] Meng Xianjie,Yang Qingshan,Wei Jianwei,et al.Experimental investigation on the lateral structural performance of a traditional Chinese pre-Ming dynasty timber structure based on half-scale pseudo-static tests[J].Engineering Structures,2018,167:582–591. doi: 10.1016/j.engstruct.2018.04.077
    [3] 赵鸿铁,张风亮,薛建阳,等.古建筑木结构的结构性能研究综述[J].建筑结构学报,2012,33(8):1–10. doi: 10.3969/j.issn.1673-7644.2011.04.003

    Zhao Hongtie,Zhang Fengliang,Xue Jianyang,et al.Research review on structural performance of ancient timber structure[J].Journal of Building Structures,2012,33(8):1–10 doi: 10.3969/j.issn.1673-7644.2011.04.003
    [4] Chen Zhiyong,Zhu Enchun,Pan Jinglong,et al.Energy-dissipation performance of typical beam-column joints in Yingxian wood pagoda:Experimental study[J].Journal of Performance of Constructed Facilities,2016,30(3):04015028. doi: 10.1061/(asce)cf.1943-5509.0000771
    [5] Chiba K,Fujita K,Koshihara M,et al.Fundamental vibration characteristics of traditional timber five storied pagoda by shaking table tests:Experimental results of traditional timber five storied pagoda scaled model part 1[J].Journal of Structural and Construction Engineering(Transactions of AIJ),2007,72(614):69–75. doi: 10.3130/aijs.72.69_1
    [6] Masaki M,Yoshiyuki S.Seismic response characteristics of traditional wooden frame by full-scale dynamic and static tests [C]//Proceeding of the 13th World Conference on Earthquake Engineering,Auckland:Structural Engineering,2004.
    [7] 薛建阳,白福玉,张锡成,等.古建筑木结构榫卯节点刚度的地震损伤分析和识别[J].振动与冲击,2018,37(6):47–54. doi: 10.13465/j.cnki.jvs.2018.06.008

    Xue Jianyang,Bai Fuyu,Zhang Xicheng,et al.Seismic damage analysis and identification for the stiffness of ancient timber buildings mortise-tenon joints[J].Journal of Vibration and Shock,2018,37(6):47–54 doi: 10.13465/j.cnki.jvs.2018.06.008
    [8] 张风亮,赵鸿铁,薛建阳,等.古建筑木构架长周期地震响应分析[J].振动与冲击,2012,31(11):70–73. doi: 10.3969/j.issn.1000-3835.2012.11.014

    Zhang Fengliang,Zhao Hongtie,Xue Jianyang,et al.Long-period seismic response of ancient timber buildings[J].Journal of Vibration and Shock,2012,31(11):70–73 doi: 10.3969/j.issn.1000-3835.2012.11.014
    [9] 谢启芳,杜彬,李双,等.残损古建筑木结构燕尾榫节点抗震性能试验研究[J].振动与冲击,2015,34(4):165–170. doi: 10.13465/j.cnki.jvs.2015.04.028

    Xie Qifang,Du Bin,Li Shuang,et al.Tests for aseismic behaviors of damaged dovetail mortise-tenon joints of ancient timber buildings[J].Journal of Vibration and Shock,2015,34(4):165–170 doi: 10.13465/j.cnki.jvs.2015.04.028
    [10] 王明谦,宋晓滨,顾祥林.基于三维弹塑性损伤模型的木材非线性分析[J].土木工程学报,2018,51(7):22–28. doi: 10.1016/j.compositesb.2014.11.003

    Wang Mingqian,Song Xiaobin,Gu Xianglin.Nonlinear analysis of wood based on three-dimensional combined elastic-plastic and damage model[J].China Civil Engineering Journal,2018,51(7):22–28 doi: 10.1016/j.compositesb.2014.11.003
    [11] 姚侃,赵鸿铁,葛鸿鹏.古建木结构榫卯连接特性的试验研究[J].工程力学,2006,23(10):168–173.

    Yao Kan,Zhao Hongtie,Ge Hongpeng.Experimental studies on the characteristic of mortise-tenon joint in historic timber buildings[J].Engineering Mechanics,2006,23(10):168–173
    [12] 隋,赵鸿铁,薛建阳,等.古代殿堂式木结构建筑模型振动台试验研究[J].建筑结构学报,2010,31(2):35–40. doi: 10.3969/j.issn.1000-4750.2006.10.032

    Sui Yan,Zhao Hongtie,Xue Jianyang,et al.A study on Chinese ancient timber structures by shaking table test[J].Journal of Building Structures,2010,31(2):35–40 doi: 10.3969/j.issn.1000-4750.2006.10.032
    [13] 薛建阳,许丹,郭锐.有无填充墙板的穿斗式木结构房屋振动台试验及对比分析[J].振动与冲击,2020,39(13):184–192. doi: 10.13465/j.cnki.jvs.2020.13.027

    Xue Jianyang,Xu Dan,Guo Rui.Shaking table tests and contrastive analysis for column-and-Tie wooden buildings with and without infills[J].Journal of Vibration and Shock,2020,39(13):184–192 doi: 10.13465/j.cnki.jvs.2020.13.027
    [14] 宋晓滨,吴亚杰,罗烈,等.传统楼阁式木结构塔振动台试验研究[J].建筑结构学报,2017,38(2):10–19. doi: 10.14006/j.jzjgxb.2017.02.002

    Song Xiaobin,Wu Yajie,Luo Lie,et al.Shaking table test on a traditional pavilion-style wooden pagoda[J].Journal of Building Structures,2017,38(2):10–19 doi: 10.14006/j.jzjgxb.2017.02.002
    [15] 姚侃,赵鸿铁.木构古建筑柱与柱础的摩擦滑移隔震机理研究[J].工程力学,2006,23(8):127–131. doi: 10.3969/j.issn.1000-4750.2006.08.024

    Yao Kan,Zhao Hongtie.Study on the mechanism of sliding friction shock isolation between timber column and plinth in historical buildings[J].Engineering Mechanics,2006,23(8):127–131 doi: 10.3969/j.issn.1000-4750.2006.08.024
    [16] Fang D P,Iwasaki S,Yu M H,et al.Ancient Chinese timber architecture.Ⅱ:Dynamic characteristics[J].Journal of Structural Engineering,2001,127(11):1358–1364. doi: 10.1061/(asce)0733-9445(2001)127:11(1358
    [17] Wan Jia,Yang Qingshan,Wei Jianwei,et al.Initial motion analysis of traditional Chinese rocking timber frame subjected to horizontal ground motion:Theoretical and numerical investigations[J].Engineering Structures,2020,203:109898. doi: 10.1016/j.engstruct.2019.109898
    [18] Xiang Ping,Xie Ruihong,Li Zhuofeng,et al.Seismic performance of a single-story articulated steel structure system[J].Journal of Engineering Mechanics,2020,146(10):04020108. doi: 10.1061/(asce)em.1943-7889.0001828
    [19] Xie Ruihong,Li Zhuofeng,Xiang Ping,et al.Dynamic behaviors of steel multiple-rocking-column structural system with rocking stoppers[J].Engineering Structures,2021,243:112649. doi: 10.1016/j.engstruct.2021.112649
    [20] Xiang Ping,Song Guanqing,Fan Kui,et al.Shaking table test on a low-damage controlled multiple-rocking-column steel frame[J].Engineering Structures,2022,254:113896. doi: 10.1016/j.engstruct.2022.113896
    [21] 谢启芳,张利朋,向伟,等.竖向荷载作用下叉柱造式斗棋节点受力性能试验研究与有限元分析[J].建筑结构学报,2018,39(9):66–74. doi: 10.14006/j.jzjgxb.2018.09.008

    Xie Qifang,Zhang Lipeng,Xiang Wei,et al.Experimental study and finite element analysis of Dou Gong joints built with fork column under vertical loading[J].Journal of Building Structures,2018,39(9):66–74 doi: 10.14006/j.jzjgxb.2018.09.008
    [22] 程小武,沈博,刘伟庆,等.宋式带“昂”斗栱节点力学性能试验研究[J].建筑结构学报,2019,40(4):133–142. doi: 10.14006/j.jzjgxb.2019.04.014

    Cheng Xiaowu,Shen Bo,Liu Weiqing,et al.Experimental study on mechanical properties of Song-style Dougong joints with Ang[J].Journal of Building Structures,2019,40(4):133–142 doi: 10.14006/j.jzjgxb.2019.04.014
    [23] 解琳琳,燕兆,李爱群,等.典型宋式斗栱滞回耗能特性及其简化滞回模型研究[J].建筑结构学报,2019,40(8):170–180. doi: 10.14006/j.jzjgxb.2018.0323

    Xie Linlin,Yan Zhao,Li Aiqun,et al.Research on hysteretic characteristics and simplified hysteretic model for typical Song Style Brackets Sets[J].Journal of Building Structures,2019,40(8):170–180 doi: 10.14006/j.jzjgxb.2018.0323
    [24] 谢启芳,杜彬,向伟,等.古建筑木结构燕尾榫节点抗震性能及尺寸效应试验研究[J].建筑结构学报,2015,36(3):112–120. doi: 10.14006/j.jzjgxb.2015.03.014

    Xie Qifang,Du Bin,Xiang Wei,et al.Experimental study on seismic behavior and size effect of dovetail mortise-tenon joints of ancient timber buildings[J].Journal of Building Structures,2015,36(3):112–120 doi: 10.14006/j.jzjgxb.2015.03.014
    [25] Xie Qifang,Wang Long,Zheng Peijun,et al.Rotational behavior of degraded traditional mortise-tenon joints:Experimental tests and hysteretic model[J].International Journal of Architectural Heritage,2018,12(1):125–136. doi: 10.1080/15583058.2017.1390629
    [26] Li Xiaowei,Zhao Junhai,Ma Guowei,et al.Experimental study on the seismic performance of a double-span traditional timber frame[J].Engineering Structures,2015,98:141–150. doi: 10.1016/j.engstruct.2015.04.031
    [27] Meng Xianjie,Li Tieying,Yang Qingshan.Experimental study on the seismic mechanism of a full-scale traditional Chinese timber structure[J].Engineering Structures,2019,180:484–493. doi: 10.1016/j.engstruct.2018.11.055
    [28] Chen Jinyong,Chen Y F,Shi Xiwang,et al.Hysteresis behavior of traditional timber structures by full-scale tests[J].Advances in Structural Engineering,2018,21(2):287–299. doi: 10.1177/1369433217717117
    [29] Xue J Y,Wu Z J,Zhang F L,et al.Seismic damage evaluation model of Chinese ancient timber buildings[J].Advances in Structural Engineering,2015,18(10):1671–1683. doi: 10.1260/1369-4332.18.10.1671
    [30] 陈明达.蓟县独乐寺 [M].天津:天津大学出版社,2007.
图(8)  /  表(5)

本文结构

    /

    返回文章
    返回