华南丘陵区马贵河小流域暴雨山洪灾害强降水特征

谌芸 曾智琳 王协康 李晟祺 徐辉 李青 李辉

谌芸, 曾智琳, 王协康, 等. 华南丘陵区马贵河小流域暴雨山洪灾害强降水特征 [J]. 工程科学与技术, 2023, 55(3): 158-164. doi: 10.15961/j.jsuese.202101212
引用本文: 谌芸, 曾智琳, 王协康, 等. 华南丘陵区马贵河小流域暴雨山洪灾害强降水特征 [J]. 工程科学与技术, 2023, 55(3): 158-164. doi: 10.15961/j.jsuese.202101212
CHEN Yun, ZENG Zhilin, WANG Xiekang, et al. Characteristics of Torrent-Causing Heavy Rainfalls in Magui Hilly Watershed of South China [J]. Advanced Engineering Sciences, 2023, 55(3): 158-164. doi: 10.15961/j.jsuese.202101212
Citation: CHEN Yun, ZENG Zhilin, WANG Xiekang, et al. Characteristics of Torrent-Causing Heavy Rainfalls in Magui Hilly Watershed of South China [J]. Advanced Engineering Sciences, 2023, 55(3): 158-164. doi: 10.15961/j.jsuese.202101212

华南丘陵区马贵河小流域暴雨山洪灾害强降水特征

基金项目: 国家自然科学基金项目(41930972;41975001;51639007)
详细信息
    • 收稿日期:  2021-12-10
    • 网络出版时间:  2022-04-17 03:58:32
  • 作者简介:

    谌芸(1969—),女,教授级高级工程师. 研究方向:中尺度气象学. E-mail:chenyun@cma.gov.cn

  • 中图分类号: P429

Characteristics of Torrent-Causing Heavy Rainfalls in Magui Hilly Watershed of South China

  • 摘要: 降水强度及持续时间是引发山洪灾害的重要气象因素,短时间内高强度的降水极易诱发山洪灾害,研究降水因子时空变化是防范及预警山洪灾害的关键环节。为了探索不同时间尺度的降水与局地山洪灾害之间的潜在联系,本文利用2010—2018年稠密的气象自动站逐小时降水观测数据,统计分析了以马贵河小流域为中心的华南丘陵区多尺度降水特征,重点从短时强降水(降水量≥20 mm/h)的角度揭示了诱发该流域山洪灾害的可能降水成因,并分类建立了该区域典型短时强降水事件的天气学概念模型。研究表明:马贵河小流域并非华南丘陵区的年降水、年暴雨高频中心,但短时强降水发生频次较高,强度较大;山洪灾害频发与时间尺度更短的短时强降水关系更为密切,而非普遍关注的暴雨天气过程;该流域的短时强降水具有双峰型分布特征,华南前汛期(4—6月)短时强降水频次与强度略高于后汛期(7—9月),但后汛期午后的峰值频次更为集中;典型短时强降水过程可分为冷式切变型、低空低涡型、偏南急流型和热带气旋型等4种基本类型,不同环流类型的系统配置与环境条件具有明显差异。该成果一方面加深了对华南丘陵区短时强降水与山洪灾害内在联系的科学认识;另一方面,可为当地短时强降水及山洪灾害预报预警提供技术支持。

     

    Abstract: Rainfall intensity and duration are crucial meteorological factors to result in torrents. Intensive rainfall in short duration is very likely to cause torrent disaster. Analyzing the factors of precipitation is the key for torrent disaster prevention and warning. To investigate potential links between multiscale rainfall and localized torrent, by using hourly rainfall observation data from meteorological automatic weather station from 2010 to 2018, this paper statistically analyzed the multiscale rainfall features in hilly region centers around Magui River basin, especially focusing on possible precipitation factors causing local torrent in terms of short duration heavy rainfall (hourly rainfall over 20 mm), and concluded classified conceptual synoptic models on typical short duration heavy rainfall. The main conclusions are as follow: The maximum frequency of annual rainfall or heavy rainfall in South China is not centered on Magui River basin, however, the short duration heavy rainfall in Magui River basin is frequent and intensive. Frequent torrent disaster has closer relationship with short duration heavy rainfall in shorter time scale rather than with heavy rainfall in general concern. Short duration heavy rainfall in this region presented as bimodal peaks. The frequency and intensity of short duration heavy rainfall in pre-summer rainy season (i.e., from April to June) were higher than those in post-summer rainy season (i.e., from July to September). However, the short duration heavy rainfall is mainly concentrated in the afternoon in post-summer rainy season. The short duration heavy rainfall commonly occurs in four basic background types related to cold shear line, low-level vortex, southerly jet, and tropical cyclone, in which the differences were presented in both atmospheric system patterns and environmental conditions. These results help us to better understand the relationships between short duration heavy rainfall and torrent over hilly region in South China, and can be reference for prediction and warning on local short duration heavy rainfall and torrents.

     

  • 山洪灾害具有强局地性、突发性特点[1-3]。受降水强度及持续时间、地表类型及坡度、植被条件、人类活动等多因素作用,山洪灾害可靠预报预警技术依然有限。降水因子是诱发局地山洪灾害的关键因子之一,诸如降水的强度、范围与持续时间等因素均可成为山洪灾害是否暴发的条件。经验预报法、水文模拟法及山洪临界雨量法(FFG)是当前普遍采用的山洪预报预警方法[4-6]。早期风险研究主要关注山洪致灾因子的危险性[7-8]。近年来,也有学者按成灾形式分区并结合不同暴雨山洪洪水预警方法计算山洪灾害预警指标[9-10]。研究山洪灾害多发区的基本降水特征,特别是诱发山洪灾害的降水强度阈值特征是全面认识山洪致灾因子的关键,也是提升山洪预报能力的前提,可为山洪预警研究工作的开展提供可靠的数据基础。

    华南丘陵区地形地貌复杂,有众多海拔数百米的低山丘陵,孕育了众多中小河流。华南所处纬度较低,濒临热带海洋,大气环境水汽充足,受热带天气系统和西风带系统影响,是中国汛期最长[11-12]、降水量最充沛[13]、发生暴雨最频繁的地区[14-16]。该地区在高温高湿条件下极易产生的暖区暴雨是预报中的难点[17-18]。受华南地区复杂地形地貌及下垫面影响,该区域易发局地洪涝、滑坡、泥石流及山洪等强降水诱发的次生灾害。例如:广东西部马贵河小流域是华南丘陵区山洪灾害频发的典型代表,2010年,“凡亚比”台风减弱后的残余低压造成了马贵河小流域“9·21”特大山洪灾害;2016年,受低涡切变线影响,马贵河小流域上游发生破纪录特大暴雨[19]。众多研究者从暴雨致洪因子、崩塌滑坡、历史灾害等角度探讨了马贵河小流域2010年“9·21”特大山洪灾害过程[20-22],但对该区域诱发山洪灾害降水变化规律仍缺乏系统研究。Doswell[23]、Davis[24]等的研究表明,暴洪事件取决于降水强度与持续时间。现在,以数值预报为基础的现代天气预报有了很大的发展[25],人工智能、大数据等在预报中也有了应用[26]。目前,气象部门对暴雨过程特别是持续性暴雨降水过程预报效果总体较好,但对于短时间内产生高强度降水(即短时强降水,降水量≥20 mm/h)往往难以把握。短时强降水和暴雨过程是有区别的[27],而这正是突发山洪灾害的关键所在[19,28]。因此,短时强降水气候态时空特征和短时强降水事件发生前大气环境场对山洪灾害的作用也日益受到关注[29-32]。本文拟以华南丘陵区马贵河小流域为例,基于多年气象区域自动站逐小时降水量数据,系统研究该流域及周边地区的降水基本特征,并重点从短时强降水的角度分析山洪成灾的降水因子变化规律。

    数据资料主要包括站点观测降水数据与高空常规观测数据两个部分。站点观测降水数据涵盖2010年1月1日至2018年12月31日全国(不含港澳台)2 418 个国家级气象自动观测站(含基准站、基本站和一般站)和60 536个区域气象自动站的逐日降水量数据(北京时间08时至次日08时)、逐小时降水量数据,该数据主要用于降水特征统计分析。高空常规观测数据由固定每天两次施放气象探空气球获得,用于构建天气学概念模型。上述数据由国家气象中心(中央气象台)提供,并进行严格的质量控制。

    华南丘陵区海拔整体不高,中小尺度丘陵分布多且广,地形复杂(图1),马贵河小流域位于广东西部云雾山(主峰1 704 m)南麓,面向南海,流域海拔自南向北增加,地形有利于来自南海的暖湿偏南气流沿流域北高南低的地形抬升。

    图  1  华南丘陵区(109.5°E~114°E,20°N~24°N)
    Fig.  1  Topography of hill region in South China (109.5°E~114°E, 20°N~24°N)
    下载: 全尺寸图片

    华南丘陵地区年降水分布如图2所示。

    图  2  华南丘陵地区年降水分布
    Fig.  2  Annual precipitation distribution of hills region in South China
    下载: 全尺寸图片

    马贵河小流域(图2中蓝圈)并非当地年平均降水量与年平均暴雨量的高值中心。由图2(a)可见,马贵河小流域年平均降水量在1 700~1 800 mm之间;由图2(b)可见,年平均暴雨量在600 mm左右。年平均暴雨量高低值中心与年平均降水量基本重合,暴雨量占年平均降水量的比例并不受地形因素影响。由图2(c)、(d)可知,暴雨平均强度和年平均暴雨日数的分布特征与前述两种空间分布相似。整体而言,暴雨平均强度、年平均暴雨日数呈由北向南递增的分布特征;马贵河小流域暴雨平均强度约为80 mm,年均暴雨日数为7.5 d,不属于高值中心,因此该流域山洪灾害频发可能与时间尺度更短强降水有关。

    图3为马贵河小流域所在的华南丘陵区短时强降水(≥20 mm/h)分布。

    图  3  华南丘陵地区短时强降水分布
    Fig.  3  Short duration heavy rainfall distribution of hill region in South China
    下载: 全尺寸图片

    图3中可看出:年平均短时强降水量高低值中心与年平均暴雨分布基本重合,马贵河小流域(图3中蓝圈)在高低值中心过渡地区,年平均短时强降水量为450~500 mm。云雾山、云开大山南麓为短时强降水平均强度较高的中心,短时强降水平均强度超过32 mm/h,位于马贵河小流域附近,表明该地区容易出现强度较大的短时强降水,可能与该区域地形有关。

    图4(a)为不同等级短时强降水频次的月分布,分析发现马贵河小流域附近的短时强降水在年内存在两个峰值,分别在5月和8月,对应华南丘陵地区前汛期(4—6月)与后汛期(7—9月)的降水峰值。前者是由于冷暖空气交绥频繁,加之南海夏季风爆发后带来充沛的暖湿水汽造成的,后者更多的是由热带气旋等热带天气系统带来的。不同等级短时强降水在5月与8月的频次大致相当,但≥50 mm/h的极端短时强降水变化特征不明显,可能与极端短时强降水的发生概率低、局地性强等原因有关。短时强降水的日变化特征(图4(b))反映不同等级短时强降水均具有单峰型特征,峰值时间在16—17时,这与午后地表热力条件较好,具有较强的热力抬升条件有关。

    图  4  马贵河小流域地区不同等级短时强降水的月变化及日变化
    Fig.  4  Diurnal and monthly variation of different levels of short time heavy rainfall in Magui Watershed
    下载: 全尺寸图片

    图5为马贵河小流域附近短时强降水在华南丘陵地区前、后汛期的变化特征及日变化关系统计。由图5可见:华南丘陵地区前汛期和后汛期是短时强降水的集中时段,但不同等级短时强降水均以午后—傍晚出现频次最多,在日变化上,后汛期较高频次的峰值略滞后于前汛期。5月份短时强降水白天频次均较高,与南海夏季风爆发前后来自印度洋的水汽通道的建立相关。

    图  5  马贵河小流域地区不同等级短时强降水年均频次时间分布
    Fig.  5  Annual frequency distribution of different levels of short time heavy rainfall in Magui Watershed
    下载: 全尺寸图片

    华南丘陵地区短时强降水对年降水及暴雨贡献率如图6所示。

    图  6  华南丘陵地区短时强降水对年降水及暴雨贡献率
    Fig.  6  Contribution rates of short duration heavy rainfall to annual precipitation and torrential rain in hill region in South China
    下载: 全尺寸图片

    图6可知:短时强降水占年平均降水量的20%以上,与前述的各类特征分布有明显差异,马贵河小流域(图6中蓝圈)短时强降水对年降水的贡献比例较高;此外,短时强降水对暴雨的贡献比例更高,马贵河小流域附近短时强降水对暴雨的贡献比例超过40%,表明暴雨中有相当高的比例是短时强降水所贡献的,反映其降水的对流性明显。综合来看,马贵河小流域非年降水高值中心,非暴雨多发中心,但短时强降水对降水贡献比例较高,故历时短、强度大降水是造成该流域山洪灾害多发的重要气象因子。

    基于2010—2018年区域自动站小时降水观测资料,将马贵河小流域所在的华南丘陵区至少20个站出现短时强降水且持续时间≥3 h的过程,定义为一次典型短时强降水过程。统计结果共筛选出18个典型短时强降水过程。根据垂直系统配置与基本环流形势,可分为冷式切变型(6例)、低空低涡型(2例)、偏南急流型(4例)和热带气旋型(6例)。冷式切变型、低空低涡型和偏南急流型全部发生在华南丘陵地区前汛期,其共同特征是上游地区有较明显的西风槽活动,槽前具备天气尺度抬升与较好的暖湿环境条件。热带气旋型全部发生在华南丘陵地区后汛期,受到登陆热带气旋环流本体的直接影响。总体来讲,受中小尺度天气系统和局部地形条件等因素影响,马贵河小流域所在的华南丘陵区短时强降水过程可归纳为不同的天气学概念模型图,如图7所示,不同类型的具体特征表现为:

    图  7  华南丘陵地区4类典型短时强降水过程的天气学概念模型图
    Fig.  7  Synoptic conceptual diagrams for four types of short duration heavy rainfall in hill region in South China
    下载: 全尺寸图片

    1)冷式切变型(图7(a))。马贵河小流域上游地区有西风槽活动,槽底较深,并有较明显的冷槽配合,槽前低层切变线在华南中部,切变线南侧为西南风场控制,具备高温高湿的特征。

    2)低空低涡型(图7(b))。马贵河小流域上游地区有西风槽活动(多为高原下滑的短波槽与中纬度西风槽叠加),槽前低层在广西有较明显的气旋性辐合(低涡),马贵河小流域处在低涡东南侧,环境场条件与冷式切变型相当。

    3)偏南急流型(图7(c))。马贵河小流域上游地区有深厚的西风槽活动,槽前低层的低涡或切变线在长江沿江附近,华南地区受一致的西南(偏南)风场控制,无明显的天气尺度强迫条件,大气温湿条件及对流不稳定条件较冷式切变型和低空低涡型更好。

    4)热带气旋型(图7(d))。马贵河小流域直接受热带气旋本体环流影响,此类热带气旋多为西行型登陆广东的热带气旋,短时强降水多发生在热带气旋位于马贵河小流域附近或进入广西之后。

    以稠密气象观测数据为基础,系统分析了华南丘陵地区山洪灾害多发地马贵河小流域及周边降水特征,筛选华南丘陵区短时强降水过程,建立了该区天气学概念模型。结论如下:

    马贵河小流域年平均降水介于1 700~1 800 mm之间,暴雨平均强度为80 mm/d左右,年均暴雨日数为7.5 d,但马贵河小流域并非华南丘陵地区的年降水、暴雨高频中心。马贵河小流域年平均短时强降水频次在16次左右,年平均短时强降水强度较大。马贵河小流域附近短时强降水对年降水量、年暴雨量的贡献率分别超过20%和40%,对流性降水比重高,易发历时短、强度大的降水。马贵河小流域的山洪灾害频发与时间尺度更短的短时强降水关系更为密切,而非普遍关注的暴雨。

    马贵河小流域附近地区典型短时强降水过程的环流形势可分为4种基本类型:冷式切变型、低空低涡型、偏南急流型和热带气旋型。归纳总结不同类型短时强降水的关键特征与发生条件,可为当地短时强降水及提前预警山洪提供基本的预报着眼点。

  • 图  1   华南丘陵区(109.5°E~114°E,20°N~24°N)

    Fig.  1   Topography of hill region in South China (109.5°E~114°E, 20°N~24°N)

    下载: 全尺寸图片

    图  2   华南丘陵地区年降水分布

    Fig.  2   Annual precipitation distribution of hills region in South China

    下载: 全尺寸图片

    图  3   华南丘陵地区短时强降水分布

    Fig.  3   Short duration heavy rainfall distribution of hill region in South China

    下载: 全尺寸图片

    图  4   马贵河小流域地区不同等级短时强降水的月变化及日变化

    Fig.  4   Diurnal and monthly variation of different levels of short time heavy rainfall in Magui Watershed

    下载: 全尺寸图片

    图  5   马贵河小流域地区不同等级短时强降水年均频次时间分布

    Fig.  5   Annual frequency distribution of different levels of short time heavy rainfall in Magui Watershed

    下载: 全尺寸图片

    图  6   华南丘陵地区短时强降水对年降水及暴雨贡献率

    Fig.  6   Contribution rates of short duration heavy rainfall to annual precipitation and torrential rain in hill region in South China

    下载: 全尺寸图片

    图  7   华南丘陵地区4类典型短时强降水过程的天气学概念模型图

    Fig.  7   Synoptic conceptual diagrams for four types of short duration heavy rainfall in hill region in South China

    下载: 全尺寸图片
  • [1] 练继建,杨伟超,徐奎,等.山洪灾害预警研究进展与展望[J].水力发电学报,2018,37(11):1–14.

    Lian Jijian,Yang Weichao,Xu Kui,et al.Advances and prospect of flash flood forecasting[J].Journal of Hydroelectric Engineering,2018,37(11):1–14
    [2] Lian Jijian,Yang Weichao,Xu Kui,et al.Flash flood vulnerability assessment for small catchments with a material flow approach[J].Natural Hazards,2017,88(2):699–719. doi: 10.1007/s11069-017-2887-2
    [3] Yang Weichao,Xu Kui,Lian Jijian,et al.Multiple flood vulnerability assessment approach based on fuzzy comprehensive evaluation method and coordinated development degree model[J].Journal of Environmental Management,2018,213:440–450.
    [4] Hapuarachchi H A P,Wang Q J,Pagano T C.A review of advances in flash flood forecasting[J].Hydrological Processes,2011,25(18):2771–2784. doi: 10.1002/hyp.8040
    [5] 徐辉,曹勇,曾子悦.基于 FFPI 的山洪灾害风险预警方法[J].灾害学,2020,35(3):90–95. doi: 10.3969/j.issn.1000-811X.2020.03.019

    Xu Hui,Cao Yong,Zeng Ziyu.A method of flash flood risk early warning based on FFPI[J].Journal of Catastrophology,2020,35(3):90–95 doi: 10.3969/j.issn.1000-811X.2020.03.019
    [6] 何秉顺,黄先龙,郭良.我国山洪灾害防治路线与核心建设内容[J].中国防汛抗旱,2012,22(5):19–22.

    He Bingshun,Huang Xianlong,Guo Liang.Mountain torrent disaster prevention and control route and core construction content in China[J].China Flood & Drought Management,2012,22(5):19–22
    [7] Aulitzky H.Hazard mapping and zoning in austria:Methods and legal implications[J].Mountain Research & Development,1994,14(4):307–313.
    [8] Eldeen M T.Predisaster physical planning:Integration of disaster risk analysis into physical planning—A case study in Tunisia[J].Disasters,1980,4(2):211–222. doi: 10.1111/j.1467-7717.1980.tb00274.x
    [9] 王协康,杨坡,孙桐,等.山区小流域暴雨山洪灾害分区预警研究[J].工程科学与技术,2021,53(1):29–38.

    Wang Xiekang,Yang Po,Sun Tong,et al.Study on division early warning of flash flood disaster caused by rainstorm in mountainous small watersheds[J].Advanced Engineering Sciences,2021,53(1):29–38
    [10] 孙桐,杨坡,许泽星,等.中都河流域“8·16”山洪致灾机理分析[J].工程科学与技术,2021,53(1):132–138.

    Sun Tong,Yang Po,Xu Zexin,et al.Analysis on the disaster mechanism of “8·16” flash flood in Zhongdu River basin[J].Advanced Engineering Science,2021,53(1):132–138
    [11] Luo Yali.Advances in understanding the early-summer heavy rainfall over South China[M]//Chang C P,Kuo H C,Lau N C,et al.World Scientific Series on Asia-pacific Weather and Climate,New Jersey:World Scientific,2017:215–226.
    [12] Luo Yali,Zhang Renhe,Wan Qilin,et al.The southern China monsoon rainfall experiment(SCMREX)[J].Bulletin of the American Meteorological Society,2017,98(5):999–1013. doi: 10.1175/BAMS-D-15-00235.1
    [13] 孔期,林建.2015年5月19—20日华南地区不同性质暴雨成因和预报分析[J].气象,2017,43(7):792–803.

    Kong Qi,Lin Jian.Analysis on causes and forecasts of the torrential rainfall with different features over South China during 19 to 20 May 2015[J].Meteorological Monthly,2017,43(7):792–803
    [14] 陈涛,孙军,谌芸,等.广州“5.7”局地突发特大暴雨过程的数值可预报性分析[J].气象,2019,45(9):1199–1212. doi: 10.7519/j.issn.1000-0526.2019.09.002

    Chen Tao,Sun Jun,Chen Yun,et al.Study on the numerical predictivity of localized severe mesoscale rainstorm in Guangzhou on 7 May 2017[J].Meteorological Monthly,2019,45(9):1199–1212 doi: 10.7519/j.issn.1000-0526.2019.09.002
    [15] 曾智琳,谌芸,王东海.2018年8月华南超历史极值降水事件的观测分析与机理研究[J].大气科学,2020,44(4):695–715.

    Zeng Zhilin,Chen Yun,Wang Donghai.Observation and mechanism analysis for a record-breaking heavy rainfall event over Southern China in August 2018[J].Chinese Journal of Atmospheric Sciences,2020,44(4):695–715
    [16] 徐珺,毕宝贵,谌芸,等.“5.7”广州局地突发特大暴雨中尺度特征及成因分析[J].气象学报,2018,76(4):511–524.

    Xu Jun,Bi Baogui,Chen Yun,et al.Mesoscale characteristics and mechanism analysis of the unexpected local torrential rain in Guangzhou on 7 May 2017[J].Acta Meteorologica Sinica,2018,76(4):511–524
    [17] 吴亚丽,蒙伟光,陈德辉,等.一次华南暖区暴雨过程可预报性的初值影响研究[J].气象学报,2018,76(3):323–342.

    Wu Yali,Meng Weiguang,Chen Dehui,et al.A study of the impact of initial conditions on the predict-ability of awarm-sector torrential rain over South China[J].Acta Meteorologica Sinica,2018,76(3):323–342
    [18] 谌芸,陈涛,汪玲瑶,等.中国暖区暴雨的研究进展[J].暴雨灾害,2019,38(5):483–493.

    Chen Yun,Chen Tao,Wang Lingyao,et al.A review of the warm-sector rainstorms in China[J].Torrential Rain and Disasters,2019,38(5):483–493
    [19] 徐明,黄治勇,高琦.2016年5月20日广东信宜特大暴雨中尺度对流系统特征分析[J].暴雨灾害,2018,37(1):32–40. doi: 10.3969/j.issn.1004-9045.2018.01.005

    Xu Ming,Huanng Zhiyong,Gao Qi.Analysis of mesoscale convective systems characteristics of torrential rain in Xinyi Guangdong province in 20th May 2016[J].Torrential Rain and Disasters,2018,37(1):32–40 doi: 10.3969/j.issn.1004-9045.2018.01.005
    [20] 黄靖玲,徐粒,周华真,等.基于历史灾害情景再现的小流域山洪风险研究[J].灾害学,2020,35(3):194–200.

    Huang Jingling,Xu Li,Zhou Huazhen,et al.Risk of flash flood disaster in small basin based on historical scene representation[J].Journal of Catastrophology,2020,35(3):194–200
    [21] 王钧,宫清华,熊海仙.粤西低山丘陵区崩塌滑坡灾害易发性分析[J].人民长江,2017,48(10):47–53.

    Wang Jun,Gong Qinghua,Xiong Haixian.Susceptibility assessment of collapse and landslide disasters in low mountain and hilly areas of west Guangdong[J].Yangtze River,2017,48(10):47–53
    [22] 黄晓莹,程正泉.台风“凡亚比”造成马贵镇致洪暴雨分析[J].广东气象,2011,33(6):1–3.

    Huang Xiaoying,Cheng Zhengquan.Analysis on the torrential rain event associated with typhoon Fanapi in Magui[J].Guangdong Meteorology,2011,33(6):1–3
    [23] Doswell C A Ⅲ,Brooks H E,Maddox R A.Flash flood forecasting:An ingredients-based methodology[J].Weather and Forecasting,1996,11(4):560–581. doi: 10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
    [24] Davis R S.Flash flood forecast and detection methods[J].Meteorological Monographs,2001,28(50):481–526.
    [25] 谌芸,曹勇,孙健,等.中央气象台精细化网格降水预报技术的发展和思考[J].气象,2021,47(6):655–670.

    Chen Yun,Cao Yong,Sun Jian,et al.Progress of fine gridded quantitative precipitation forecast technology of national meteorological centre[J].Meteorological Monthly,2021,47(6):655–670
    [26] Dupuy F,Duine G J,Durand P,et al.Local-scale valley wind retrieval using an artificial neural network applied to routine weather observations[J].Journal of Applied Meteorology and Climatology,2019,58(4):797–806. doi: 10.1175/JAMC-D-18-0064.1
    [27] 孙继松.短时强降水和暴雨的区别与联系[J].暴雨灾害,2017,36(6):498–506.

    Sun Jisong.Differences and relationship between flash heavy rain and heavy rainfall[J].Torrential Rain and Disasters,2017,36(6):498–506
    [28] Maddox R A,Chappell C F,Hoxit L R.Synoptic and meso-α scale aspects of flash flood events[J].Bulletin of the American Meteorological Society,1979,60(2):115–123. doi: 10.1175/1520-0477-60.2.115
    [29] Luo Yali,Wang Hui,Zhang Renhe.Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over south China and Yangtze-and-Huai rivers basin[J].Journal of Climate,2013,26(1):110–132. doi: 10.1175/JCLI-D-12-00100.1
    [30] Chen Jiong,Zheng Yongguang,Zhang Xiaoling,et al.Distribution and diurnal variation of warm-season short-duration heavy rainfall in relation to the MCSs in China[J].Journal of Meteorological Research,2013,27(6):868–888.
    [31] Tian Fuyou,Zheng Yongguang,Zhang Tao,et al.Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China[J].Journal of Meteorological Research,2015,29(3):370–384. doi: 10.1007/s13351-014-4119-y
    [32] 陈元昭,俞小鼎,陈训来.珠江三角洲地区重大短时强降水的基本流型与环境参量特征[J].气象,2016,42(2):144–155. doi: 10.7519/j.issn.1000-0526.2016.02.002

    Chen Yuanzhao,Yu Xiaoding,Chen Xunlai.Characteristics of short-time severe rainfall events based on weather flow and key environmental parameters in Pearl River Delta[J].Meteorological Monthly,2016,42(2):144–155 doi: 10.7519/j.issn.1000-0526.2016.02.002
图(7)

本文结构

    /

    返回文章
    返回