基于两阶段风险分析的水库群汛期运行水位动态控制模型

张晓琦 刘攀 陈进 许继军 姚立强 王永强 洪晓峰

张晓琦, 刘攀, 陈进, 等. 基于两阶段风险分析的水库群汛期运行水位动态控制模型 [J]. 工程科学与技术, 2022, 54(5): 141-148. doi: 10.15961/j.jsuese.202100688
引用本文: 张晓琦, 刘攀, 陈进, 等. 基于两阶段风险分析的水库群汛期运行水位动态控制模型 [J]. 工程科学与技术, 2022, 54(5): 141-148. doi: 10.15961/j.jsuese.202100688
ZHANG Xiaoqi, LIU Pan, CHEN Jin, et al. Dynamic Control Model of Multi-reservoir Flood Limited Water Levels During Flood Seasons Based on the Two-stage Flood Risk Analysis [J]. Advanced Engineering Sciences, 2022, 54(5): 141-148. doi: 10.15961/j.jsuese.202100688
Citation: ZHANG Xiaoqi, LIU Pan, CHEN Jin, et al. Dynamic Control Model of Multi-reservoir Flood Limited Water Levels During Flood Seasons Based on the Two-stage Flood Risk Analysis [J]. Advanced Engineering Sciences, 2022, 54(5): 141-148. doi: 10.15961/j.jsuese.202100688

基于两阶段风险分析的水库群汛期运行水位动态控制模型

基金项目: 国家自然科学基金青年基金项目(52109003);国家自然科学基金重大项目(41890822)
详细信息
    • 收稿日期:  2021-07-14
    • 网络出版时间:  2022-07-28 02:52:18
  • 作者简介:

    张晓琦(1993—),女,工程师,博士. 研究方向:水文学及水资源. E-mail:zhangxq@mail.crsri.cn

    通信作者:

    刘攀, E-mail: liupan@whu.edu.cn

  • 中图分类号: TV21

Dynamic Control Model of Multi-reservoir Flood Limited Water Levels During Flood Seasons Based on the Two-stage Flood Risk Analysis

  • 摘要: 水库群实时调度能结合有效的水文预报信息对水库在实时运行层面权衡防洪与兴利效益具有指导意义。然而,水文预报信息的利用面临着不可规避的不确定性问题,故水库群实时调度运行需要考虑风险控制方法的研究。本文针对耦合水文预报的水库群汛期运行水位动态控制问题,提出了可考虑各水库不同预见期长度、不同预报精度的两阶段风险率计算方法,并将其应用于构建水库群汛期运行水位动态控制模型。首先,两阶段风险率是将未来调度时段按预见期节点分为预见期以内和预见期以外两个阶段,预见期以内考虑径流预报不确定性带来的风险,采用集合预报思想统计多组预报径流情景在预见期以内的失事概率;预见期以外考虑因预见期末水位过高难于应对后续洪水的潜在风险,根据历史设计洪水的调洪演算试算风险率。其次,基于所提出的两阶段风险率方法构建以发电量最大为目标函数的水库群汛期运行水位动态控制模型。将该方法应用于汉江流域5库群系统,其研究结果表明:1)提出的两阶段风险率计算方法可兼顾考虑实时调度阶段由径流不确定性引起的预见期以内、预见期以外的潜在风险;2)相比于常规调度方案,优化调度模型方案在2020年实测夏汛期径流情景下提高了库群系统发电量为2.30×108 kW·h。因此,基于两阶段风险分析构建的水库群优化调度模型,可求解得出的水库群系统库容动态最优决策过程,且该优化调度模型可在不增加汛期防洪风险的基础上提高水库群系统的发电效益。

     

    Abstract: Real-time reservoirs operation can be combined with effective hydrological forecast information, which is of significant guide for the trade-offs between the flood control and utilizable benefit. However, the use of hydrological forecast information faces unavoidable uncertainties. Therefore, the flood risk control analysis should be considered in the field of the real-time reservoir operation. A dynamic control model of multi-reservoir flood limited water levels (FLWLs) during flood seasons based on the two-stage flood risk analysis method is proposed to solve the problem that the length and accuracy of forecast period among reservoirs in the system do not match with each other. First, the two-stage flood risk analysis method evaluates the uncertainty of the flood forecasting by dividing the operation horizon into the forecast lead-time and the beyond-forecast time period. The risk within the forecast lead-time induced by the streamflow uncertainty is estimated by counting the frequency of failure numbers among all scenarios with the help of the scenario-based forecasts. The risk beyond the forecast time period caused by the possible high-water level at the end of the forecast period is determined using reservoir flood routing with the design flood hydrographs. A real-time model of multi-reservoir systems is then established by considering the two-stage flood risk analysis method, and the objective of this model is to maximize the hydropower benefit. The results show that: 1) the proposed two-stage flood risk analysis method can take into account the potential risks within and beyond the forecast time period; 2) the proposed dynamic control of the FLWLs in multi-reservoir systems can increase the total hydropower generation in summer flood season for the five-reservoir system of the Hanjiang River Basin by 0.23 billion kW·h in 2010 year without increasing the flood risk, and the dynamic optimal decision-making process of the multi-reservoir system’s flood storage can be obtained.

     

  • 水库汛期运行水位动态控制研究属于实时调度运行层面的问题,其研究目的在于兼顾考虑未来预见期内的降雨、洪水预报信息和水库当前的库容状态,在不降低水库系统的防洪标准的前提下以寻求兴利效益最大化为目标函数,构建实时优化调度模型用于指导未来调度时段内水库库容变化或出流决策[1-2]。但水文预报信息不确定性的客观存在会导致潜在风险事件的发生(例如,径流预报低估了实际的入库径流量),因此,水库汛期运行水位实时优化调度模型的构建必须考虑风险因素的识别、评估分析[3-4]

    防洪风险因素的识别方面主要考虑水力、水文及工程结构等方面的不确定性,具体包含设计洪水过程和洪水预报误差不确定性、水库调度滞时不确定、水位–库容关系和水库泄量误差不确定性等[5-6]。水库实时调度范畴中主要考虑水文预报误差不确定性所引起的调度风险,或在此基础上考虑纳入其他不确定性的组合因素识别及风险评估分析研究。

    根据是否需要推求风险事件显式的概率分布,防洪风险分析及评估方法大致划分为两类:解析分析法和数值随机模拟法[7-8]。解析分析法通常是基于可能引起防洪风险的不确定性因素的概率密度函数开展风险分析,又可具体包含频率分析法、均值一次二阶矩方法、改进一次二阶矩方法和JC法等[9-10]。钟平安等[11]考虑洪量预报误差和调度期内水库最高控制水位两方面因素分析水库实时调度中的决策风险。Yan等[12]基于水库调洪演算的随机微分方程提出一种考虑洪水过程不确定性的水库防洪调度风险分析方法。周如瑞等[13]考虑洪水预报误差特性,依据贝叶斯定理构建了可推求汛期运行水位动态控制域上限的风险分析方法。

    数值随机模拟法,又称蒙特卡罗法,该方法的基本思路是通过随机模拟方法生成大量的随机序列,并对该样本开展相关的统计计算工作,从而结合相关统计指标进行风险分析[14]。Apel等[15]基于蒙特卡罗随机模拟框架构建了一个随机洪水风险模型,应用于洪水风险评估与不确定性分析。丁大发等[16]采用蒙特卡罗模拟技术耦合设计洪水过程、洪水预报误差和水库调度决策3个方面的不确定性构建了一个水库防洪调度多因素组合风险评估模型。冯平等[17]建立了考虑洪水预报误差的入库径流随机模拟方法,并发现洪水预报精度这一因素对水库实时调度阶段风险评估的影响较为关键。Chen等[18]先应用Copula函数建立了刻画水文预报不确定性的演化模型,再采用随机模拟法开展水库实时调度风险分析。

    目前,由于水库群系统中各水库存在水文水力联系、不同水库预见期长度和精度不匹配等问题,复杂水库群系统实时优化调度模型及其风险分析研究仍存在较大的探索空间。已有研究在分析水库群系统汛期运行水位实时调度运行中的风险因素仅考虑了预见期以内的不确定性,而且针对水库群系统中各水库预见期长度不匹配的问题,例如,文献[19]中采用的做法是“取短”,即依据预见期长度最短的水库,截取使用其他水库的部分预报信息,以寻求各水库实际利用的预报信息长度一致,但该研究思路存在部分水库的预报信息未能得到完全利用的局限性。两阶段思想由于建立了预见期和整个未来调度时期之间的关联性,在实时调度范畴已得到不少应用[20-21]。本文的研究目的在于针对耦合水文预报的水库群汛期运行水位动态控制问题,提出了可考虑各水库不同预见期长度、不同预报精度的两阶段风险率计算方法。

    图1为两水库组成的梯级水库群系统,由图1可知:两水库的预见期长短不匹配;预见期以内(阶段1)防洪风险可通过统计若干组径流预报过程中水库发生洪水风险的次数所占的比例来计算风险率[22-23],预见期以外(阶段2)的防洪风险则通过对水库设计洪水进行调洪演算来推求[24-25],而水库总防洪风险则由这两个阶段的风险耦合计算。此外,本文所提出的水库群两阶段风险率计算方法根据存在水力联系的相邻水库之间预见期长度的差异,选择相应的不同起始时刻的典型设计洪水过程,即相邻水库设计洪水过程开始的时间间隔应与预见期长度的差异相匹配,从而实现各水库不同预见期长度信息的充分利用。

    图  1  基于两阶段的两水库洪水风险识别示意图
    Fig.  1  Sketch map of the flood risk identification for a two-reservoir system based on two-stage analysis method
    下载: 全尺寸图片

    若水库出库流量超过下游允许泄量这一阈值,或者水库上游水位超过水位阈值,则可将此事件定义为水库防洪风险的发生。因此,定义预见期内水库防洪风险率有两种方式,以下游允许泄量或以水库上游水位阈值作为判别条件。基于若干组径流预报情景,预见期以内的水库群防洪风险计算如式(1)所示:

    $$ \begin{aligned}[b] {R_{S 1}} = & P\left( {\bigcup\limits_{k = 1}^n {( {{r^k} \gt {D_k}} )} } \right) =\\& P\left( {\bigcup\limits_{k = 1}^n {\left( {\frac{{\displaystyle\sum\limits_{{i_k} = 1}^{{M_k}} {\# ( {r_{{i_k},t}^k \gt {D_k},\forall t = {t_1},{t_2}, \cdots ,{t_{{F_k}}}} )} }}{{{M_k}}}} \right)} } \right) \end{aligned} $$ (1)

    式中: $n$ 为水库群系统中水库的数量; ${M_k}$ 为第 $k$ 个水库径流预报过程的情景个数, $k = 1, 2, \cdots ,n$ $ {D_k} $ 为第 $k$ 个水库风险事件发生与否的判断阈值(即第 $k$ 个水库的下游允许泄量值 ${Q_{ck}}$ 或者第 $k$ 个水库的上游水位阈值 $ {Z_{ck}} $ ); ${t_{{F_k}}}$ 为水库预见期长度; $\# ( r_{{i_k},t}^k \gt {D_k}, \forall t = {t_1},{t_2}, \cdots ,{t_{{F_k}}} )$ 为第 $i$ 个情景的二项式分布见式(2),即如果第 $k$ 个水库的第 $i$ 个径流预报情景存在任意时刻的 $r_{i,t}^k $ (即水库下游泄量 $ Q_{i,t}^k $ 或者水库上游水位 $ Z_{i,t}^k $ )超过相应的阈值,则该式的值取为1,否则该式的值取为0(即使同一情景内洪水风险事件发生次数多于一次,该式的值仍取为1); $\displaystyle\sum\limits_{{i_k} = 1}^{{M_k}} \# ( r_{{i_k},t}^k \gt {D_k},\forall t = {t_1},{t_2}, \cdots ,{t_{{F_k}}} )$ 为统计发生 $ r_{i,t}^k $ 超过阈值 $ {D_k} $ 的情景数。

    $$ \begin{aligned}[b]& \# ( {r_{i,t}^k \gt {D_k},\forall t = {t_1},{t_2}, \cdots ,{t_{{F_k}}}} )= \\&\qquad \left\{ \begin{gathered} 1,\;\;\;r_{i,t}^k \gt {D_k},\forall t = {t_1},{t_2}, \cdots ,{t_{{F_k}}}; \\ 0,\;\;{\text{其他}} \\ \end{gathered} \right. \end{aligned} $$ (2)

    预见期以外阶段的水库防洪风险虽然难以估计,但仍应考虑在水库总防洪风险计算之内。本研究中以各水库预见期末水位组合形式为水位初始状态值,采用对设计洪水进行调洪演算的方法来计算预见期以外的水库群防洪风险,如图1所示。假设第 $k$ 个水库在预见期末 $ {t_{{F_k}}} $ 时刻的水库水位 $ Z_{{i_k},{t_{{F_k}}}}^k $ 值与预见期以外调度时段内即将发生的洪水过程独立,则预见期以外的水库群防洪风险率如式(3)所示:

    $$ \begin{aligned}[b] {R_{S 2}} =& \sum\limits_{{i_n} = 1}^{{i_n} = {M_n}} \;{\sum\limits_{{i_{n - 1}} = 1}^{{i_{n - 1}} = {M_{n - 1}}} \cdots } \sum\limits_{{i_1} = 1}^{{i_1} = {M_1}} {R( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_n},{t_{{F_n}}}}^n} )}\cdot\\& P( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_n},{t_{{F_n}}}}^n} ) = \\& \frac{{\displaystyle\sum\limits_{{i_n} = 1}^{{i_n} = {M_n}}\; {\displaystyle\sum\limits_{{i_{n - 1}} = 1}^{{i_{n - 1}} = {M_{n - 1}}} \cdots } \displaystyle\sum\limits_{{i_1} = 1}^{{i_1} = {M_1}} {R( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_n},{t_{{F_n}}}}^n} )} }}{{\displaystyle\prod\limits_{k = 1}^n {{M_k}} }} \end{aligned} $$ (3)

    式中: $ Z_{{i_k},{t_{{F_k}}}}^k $ 为第 $k$ 个水库在第 $i$ 个径流预报情景预见期末 $ {t_{{F_k}}} $ 时刻水库水位; $ P( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_n},{t_{{F_n}}}}^n} ) $ 为各水库预见期末水位组合为 $ Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_n},{t_{{F_n}}}}^n $ 的概率,且 $ P( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_n},{t_{{F_n}}}}^n} ) $ 的取值通常可取为等概率 ${1 \Bigg/ {\displaystyle\prod_{k = 1}^n {{M_k}} }}$ ,即将各水库预见期末水位组合情景均视为等概率事件; $ R( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_n},{t_{{F_n}}}}^n} ) $ 为以水库水位组合 $ Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_n},{t_{{F_n}}}}^n $ 起调、恰好水库群发生防洪风险事件的洪水概率,可通过水库调洪演算获得。

    水库群总防洪风险率为除预见期以内和预见期以外两阶段防洪风险率的耦合,则水库群总防洪风险率如式(4)所示:

    $$ \begin{aligned}[b] {R_{T S}} =& {R_{S 1}} + P\left( {{R_{S 2}}|{{\overline R}_{S 1}}} \right)= \\& P\left( {\bigcup\limits_{k = 1}^n {\left( {\frac{{\displaystyle\sum\limits_{{i_k} = 1,{i_k} \in {T_k}}^{{M_k}} {\# ( {r_{{i_k},t}^k \gt {D_k},\forall t = {t_1},{t_2}, \cdots ,{t_{{F_k}}}} )} }}{{{M_k}}}} \right)} } \right)+ \\& \frac{{\displaystyle\sum\limits_{{i_n} = 1,{i_n} \notin {T_n}}^{{i_n} = {M_n}} \;{\displaystyle\sum\limits_{{i_{n - 1}} = 1,{i_{n - 1}} \notin {T_{n - 1}}}^{{i_{n - 1}} = {M_{n - 1}}} \cdots } \displaystyle\sum\limits_{{i_1} = 1,{i_1} \notin {T_1}}^{{i_1} = {M_1}} {R( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_n},{t_{{F_n}}}}^n} )} }}{{\displaystyle\prod\limits_{k = 1}^n {{M_k}} }} \end{aligned} $$ (4)

    式中: ${T_k}$ 代表第 $i$ 个水库在预见期以内发生防洪风险事件(即水库下游泄量 $ Q_{i,t}^k $ 或者水库上游水位 $ Z_{i,t}^k $ 超过相应的阈值)的径流预报情景集合。

    需要说明的是,所提出的水库群两阶段防洪风险率计算方法适用的研究是年尺度内防洪风险事件,且与水库自身的防洪标准有关,因此,将上述水库群总防洪风险率的计算方法应用于水库调度过程中应以水库群自身的防洪标准作为水库群防洪风险率的约束上限值。

    将所提出的水库群两阶段风险率作为防洪约束条件,可应用于建立水库群实时优化调度模型。具体模型构建示意图如图2所示,该模型包括两阶段风险率计算模块、优化调度模型模块和径流预报–滚动计算模块。通过结合预报–滚动思路,在更新预报信息的同时,不断更新水库群的最优调度决策[26-27]:若当前的时刻为 ${t_0}$ ,求解所建立的水库群实时优化调度模型可推求库群系统预见期以内的最优调度决策;当调度时段向前滚动一个单位时间间隔 $\Delta t$ 而移动到下一时刻 ${t_1}$ 时, ${t_0}$ 时刻所推求的最优调度决策被执行了一个步长 $\Delta t$ ,并推求当前时刻对应未来预见期以内的最优调度决策;依次推进到整个调度期末。

    图  2  水库群实时优化调度模型构建示意图
    Fig.  2  Sketch map of the construction for the real-time reservoir operation optimization model
    下载: 全尺寸图片

    水库群系统实时优化调度模型的目标函数为发电量最大,如式(5)所示:

    $$ \max \;{E_{{\text{Total}}}} = \sum\limits_{k = 1}^n {{E_k}\left( {V_{{t_1}}^k,V_{{t_2}}^k, \cdots ,V_{{t_{{F_k}}}}^k} \right)} $$ (5)

    式中: $V_{{t_{{F_k}}}}^k$ 为第 $k$ 个水库在预见期末 $ {t_{{F_k}}} $ 的水库库容值, $t = {t_1},{t_2}, \cdots ,{t_{{F_k}}}$ ${E_k}\left( \cdot \right)$ 为第 $k$ 个水库在预见期内的发电量; ${E_{{\text{Total}}}}$ 为水库群系统的总发电量。

    1)两阶段风险率约束:

    $$ 0 \lt {R_{{{TS}}}} \le {R_{{\text{accepted}}}} $$ (6)

    式中, $ {R_{{\text{accepted}}}} $ 为水库群系统的防洪标准。

    2)库容约束:

    $$ V_{\min }^k \le V_t^k \le V_{\max }^k $$ (7)

    式中, $ V_{\min }^k $ $ V_{\max }^k $ 分别为第 $k$ 个水库在汛期调度期内的库容下限和上限值。

    3)泄流能力约束:

    $$ 0 \le Q_t^k \le Q_{\max }^k( {Z_t^k} ) $$ (8)

    式中, $ Q_{\max }^k\left( {Z_t^k} \right) $ 为第 $k$ 个水库在时刻 $t$ 库水位 $ Z_t^k $ 所对应的最大下泄能力。

    4)河道洪水演算:

    $$ I_t^k = f( {Q_t^{k - 1}} ) + O_t^k $$ (9)

    式中, $ f\left( \cdot \right) $ 为上下游间的河道演算函数, $ O_t^k $ 为第 $k - 1$ 个水库和第 $k$ 个水库之间的区间入流, $k = 2,3, \cdots ,n$

    5)流量变幅约束:

    $$ | {Q_t^k - Q_{t - 1}^k} | \le \Delta Q_m^k $$ (10)

    式中, $ \Delta Q_m^k $ 为第 $k$ 个水库允许的最大流量变幅。

    本文以汉江流域中的安康、潘口、丹江口、三里坪以及鸭河口5个水库构成的串并联形式复杂的水库群系统为研究对象,如图3所示。其中,安康、潘口水库分别与丹江口水库形成串联结构,三里坪、鸭河口水库与丹江口水库组成并联形式。

    图  3  5库系统示意图
    Fig.  3  Schematic diagram of the five-reservoir system
    下载: 全尺寸图片

    汉江流域为长江流域最大的支流,多年平均年降水量呈现由上游向下游增大的变化规律,量级区间大致为700~1 100 mm;流域暴雨发生的时节多在7—10月,划分为夏、秋季暴雨,故形成的洪水也相应分有夏、秋两季[28-29]。由于库群系统的夏汛期和秋汛期的水库特征参数是独立分开设计的,且相同设计频率条件下夏汛期的设计洪水量级相比秋汛期设计洪水量级更大,故本文仅以夏汛期为研究时段开展实例分析,夏汛期为6月中下旬至8月中下旬。

    由于径流资料长度有限、预报模型存在结构误差、参数不确定性等因素,径流情景预报均存在一定的不确定性,而本文的侧重点在于水库群两阶段风险率思想的提出。因此,预见期以内的径流情景直接采用一种简单的径流情景生成方法,具体思路参考于文献[19-20]:1)假设入库径流的预报相对误差为 $\varepsilon $ ,且 $\varepsilon $ 服从正态分布 $\varepsilon $ ${\rm{N}}\left( {\mu ,{\sigma ^2}} \right)$ ,通常该分布中的均值 $\;\mu $ 取值为0,预报情景相对误差主要取决于方差 ${\sigma ^2}$ ;2)在水库群系统的长系列径流资料中随机抽样选取水库的入库实测径流过程为基准,记实测径流量为 ${Q_{{\rm{ob}}}}$ ;3)预报径流情景可以通过在实测历史径流过程叠加预报相对误差来生成,即 ${Q_{\rm{f}}} = {Q_{{\rm{ob}}}} \times \left( {1 + \varepsilon } \right)$

    5个水库的预报相对误差采用数据如下:安康水库的6 h入库预报相对误差为 $\sigma _{{\text{AK}}}^2$ =0.038[30],潘口水库的6 h入库预报相对误差为 $\sigma _{{\text{PK}}}^2$ =0.016[31],丹江口水库的12 h入库预报相对误差为 $\sigma _{{\text{DJK}}}^2$ =0.021[32],三里坪水库的6 h入库预报相对误差为 $\sigma _{{\text{SLP}}}^2$ =0.075[33],鸭河口水库的6 h入库预报相对误差为 $\sigma _{{\text{YHK}}}^2$ =0.040[34-35]

    针对汉江流域5库群系统,预见期以外的风险率可根据式(11)计算:

    $$ \begin{aligned}[b] {R_{S 2}} =& \displaystyle\sum\limits_{{i_5} = 1}^{{i_5} = {M_5}} {\sum\limits_{{i_4} = 1}^{{i_4} = {M_4}} \cdots } \displaystyle\sum\limits_{{i_1} = 1}^{{i_1} = {M_1}} {R( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_5},{t_{{F_5}}}}^5} )}\cdot \\& P( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_5},{t_{{F_5}}}}^5} ) = \\& \frac{{\displaystyle\sum\limits_{{i_5} = 1}^{{i_5} = {M_5}} {\displaystyle\sum\limits_{{i_4} = 1}^{{i_4} = {M_4}} \cdots } \displaystyle\sum\limits_{{i_1} = 1}^{{i_1} = {M_1}} {R( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_5},{t_{{F_5}}}}^5} )} }}{{{M_1} \times {M_2} \times {M_3} \times {M_4} \times {M_5}}} \end{aligned} $$ (11)

    式中: ${M_1}$ ${M_2}$ ${M_3}$ ${M_4}$ ${M_5}$ 依次是安康、潘口、丹江口、三里坪和鸭河口水库的径流情景数,本文中设置 ${M_1} = {M_2} = {M_3} = {M_4} = {M_5}{\text{ = 10}}$ ,即水库群系统的总情景数为 ${10^5}$ $ Z_{{i_1},{t_{{F_1}}}}^1 $ $ Z_{{i_2},{t_{{F_2}}}}^2 $ $ Z_{{i_3},{t_{{F_3}}}}^1 $ $ Z_{{i_4},{t_{{F_4}}}}^2 $ $ Z_{{i_2},{t_{{F_5}}}}^2 $ 依次为安康、潘口、丹江口、三里坪和鸭河口水库在预见期末的水库水位; $R( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^1, \cdots ,Z_{{i_5},{t_{{F_5}}}}^5} )$ 可通过对水库群系统的设计洪水进行调洪演算推求得到。

    为了降低实时防洪调度模型的计算量, ${R_{S 2}}$ 与汉江流域水库群系统中的5个水库预见期末水位 $( {Z_{{i_1},{t_{{F_1}}}}^1,Z_{{i_2},{t_{{F_2}}}}^2, \cdots ,Z_{{i_5},{t_{{F_5}}}}^5} )$ 的组合关系是预先计算储存的;安康水库预见期末水位的变幅范围为305.0~330.0 m,潘口水库预见期末水位的变幅范围为330.0~355.0 m,丹江口水库预见期末水位的变幅范围为155.0~170.0 m,三里坪水库预见期末水位的变幅范围为392.0~416.0 m,鸭河口水库预见期末水位的变幅范围为160.0~177.0 m。

    将所提出的水库群两阶段洪水风险率计算作为防洪约束条件,以发电量最大为目标函数,构建汉江流域5库群系统汛期运行水位实时优化调度模型,模型的求解方法采用信任域反射算法(trust region reflective algorithm),模型调度时段长选取为小时尺度。表1图4为常规调度方案和实时优化调度方案的调度结果对比。

    表  1  汉江流域5库系统2010年洪水的调度方案结果对比
    Table  1  Comparison results of reservoir operation for the five-reservoir system of the Hanjiang River basin in the 2010 flood       
    情景类别 库群系统总
    发电量/(108 kW·h)
    坝前最高水位/m 最大下泄流量/(m3·s–1)
    安康 潘口 丹江口 三里坪 鸭河口 安康 潘口 丹江口 三里坪 鸭河口
    常规调度 16.07 326.97 347.60 160.00 403.00 175.70 17 000 3 100 25 057 426 1 240
    优化调度 18.37 329.95 347.60 161.40 403.00 175.70 21 138 4 677 18 931 1 151 3 004
    设计阈值 330.00 356.65 170.60 420.00 179.10 33 400 12 130 46 830 5 261 6 063
    图  4  汉江流域5库系统2010年洪水的调度曲线
    Fig.  4  Reservoir operation curves for the five-reservoir system of the Hanjiang River basin in the 2010 flood
    下载: 全尺寸图片

    表1所示,实时优化调度方案可在不增加防洪风险的基础上提高汉江流域5库群系统夏汛期调度时段的总发电量2.30×108 kW·h,且5个水库的坝前最高水位、最大下泄流量值在优化调度方案下均未超过相应的阈值。如图4所示,实时优化调度方案中各水库的决策表现呈现出如下规律:当来水量较小时,各水库通过给出增大出流的调度决策来增加发电量(如6月21日—7月16日或7月31日—8月20日);而当来水较大时,各水库通过增加水库发电水头(水库水位)的调度决策来增加发电量(如7月16日—7月31日)。

    1)水库群两阶段风险率计算方法将未来调度期划分为预见期以内和预见期以外,预见期以内的风险率计算是统计多组预报径流情景在预见期以内的失事概率,预见期以外的风险率是利用历史设计洪水信息进行调洪演算推求得到。综上,水库群两阶段风险计算方法既评估了预见期以内径流预报不确定性所引起的风险,又兼顾考虑了预见期末水位过高难以应对后续洪水的潜在风险。

    2)结合汉江流域5库系统的应用结果,根据所构建的基于两阶段风险分析的实时优化调度模型,可求解得出的水库群系统库容动态最优决策过程,且该优化调度模型可在不增加汛期防洪风险的基础上提高水库群系统的发电效益。以汉江流域5库群系统2010年夏汛期实测径流为例,在不降低防洪标准的前提下,该模型可提高库群系统发电量为2.30×108 kW·h。

  • 图  1   基于两阶段的两水库洪水风险识别示意图

    Fig.  1   Sketch map of the flood risk identification for a two-reservoir system based on two-stage analysis method

    下载: 全尺寸图片

    图  2   水库群实时优化调度模型构建示意图

    Fig.  2   Sketch map of the construction for the real-time reservoir operation optimization model

    下载: 全尺寸图片

    图  3   5库系统示意图

    Fig.  3   Schematic diagram of the five-reservoir system

    下载: 全尺寸图片

    图  4   汉江流域5库系统2010年洪水的调度曲线

    Fig.  4   Reservoir operation curves for the five-reservoir system of the Hanjiang River basin in the 2010 flood

    下载: 全尺寸图片

    表  1   汉江流域5库系统2010年洪水的调度方案结果对比

    Table  1   Comparison results of reservoir operation for the five-reservoir system of the Hanjiang River basin in the 2010 flood       

    情景类别 库群系统总
    发电量/(108 kW·h)
    坝前最高水位/m 最大下泄流量/(m3·s–1)
    安康 潘口 丹江口 三里坪 鸭河口 安康 潘口 丹江口 三里坪 鸭河口
    常规调度 16.07 326.97 347.60 160.00 403.00 175.70 17 000 3 100 25 057 426 1 240
    优化调度 18.37 329.95 347.60 161.40 403.00 175.70 21 138 4 677 18 931 1 151 3 004
    设计阈值 330.00 356.65 170.60 420.00 179.10 33 400 12 130 46 830 5 261 6 063
  • [1] Diao Yanfang,Wang Bende.Scheme optimum selection for dynamic control of reservoir limited water level[J].Science China Technological Sciences,2011,54(10):2605–2610. doi: 10.1007/s11431-011-4555-1
    [2] Mesbah S M,Kerachian R,Nikoo M R.Developing real time operating rules for trading discharge permits in rivers:Application of Bayesian Networks[J].Environmental Modelling & Software,2009,24(2):238–246.
    [3] Becker L,Yeh W W.Optimization of real time operation of a multiple-reservoir system[J].Water Resources Research,1974,10(6):1107–1112. doi: 10.1029/WR010i006p01107
    [4] Yazdi J,Torshizi A D,Zahraie B.Risk based optimal design of detention dams considering uncertain inflows[J].Stochastic Environmental Research and Risk Assessment,2016,30(5):1457–1471.
    [5] Zhu Feilin,Zhong Pingan,Sun Yimeng,et al.Real-time optimal flood control decision making and risk propagation under multiple uncertainties[J].Water Resources Research,2017,53(12):10635–10654. doi: 10.1002/2017WR021480
    [6] Wu Shiangjen,Yang Jinnchuang,Tung Yeoukoung.Risk analysis for flood-control structure under consideration of uncertainties in design flood[J].Natural Hazards,2011,58(1):117–140. doi: 10.1007/s11069-010-9653-z
    [7] Peng Yang,Chen Kai,Yan Hongxiang,et al.Improving flood-risk analysis for confluence flooding control downstream using Copula Monte Carlo method[J].Journal of Hydrologic Engineering,2017,22(8):4017018. doi: 10.1061/(ASCE)HE.1943-5584.0001526
    [8] Zhang Xiaoqi,Liu Pan,Xu Chongyu,et al.Real-time reservoir flood control operation for cascade reservoirs using a two-stage flood risk analysis method[J].Journal of Hydrology,2019,577:123954. doi: 10.1016/j.jhydrol.2019.123954
    [9] 闫宝伟,郭生练.考虑洪水过程预报误差的水库防洪调度风险分析[J].水利学报,2012,43(7):803–807. doi: 10.13243/j.cnki.slxb.2012.07.010

    Yan Baowei,Guo Shenglian.Risk estimation of reservoir flood operation in consideration of inflow hydrograph forecasting error[J].Journal of Hydraulic Engineering,2012,43(7):803–807 doi: 10.13243/j.cnki.slxb.2012.07.010
    [10] 黄强,苗隆德,王增发.水库调度中的风险分析及决策方法[J].西安理工大学学报,1999,15(4):6–10. doi: 10.3969/j.issn.1006-4710.1999.04.002

    Huang Qiang,Miao Longde,Wang Zengfa.Analysis and decision methods for the risk in reservoir operation[J].Journal of Xi’an University of Technology,1999,15(4):6–10 doi: 10.3969/j.issn.1006-4710.1999.04.002
    [11] 钟平安,曾京.水库实时防洪调度风险分析研究[J].水力发电,2008,34(2):8–9. doi: 10.3969/j.issn.0559-9342.2008.02.003

    Zhong Pingan,Zeng Jing.Research on risk analysis of reservoir real-time flood control operation[J].Water Power,2008,34(2):8–9 doi: 10.3969/j.issn.0559-9342.2008.02.003
    [12] Yan Baowei,Guo Shenglian,Chen Lu.Estimation of reservoir flood control operation risks with considering inflow forecasting errors[J].Stochastic Environmental Research and Risk Assessment,2014,28(2):359–368. doi: 10.1007/s00477-013-0756-4
    [13] 周如瑞,卢迪,王本德,等.基于贝叶斯定理与洪水预报误差抬高水库汛限水位的风险分析[J].农业工程学报,2016,32(3):135–141. doi: 10.11975/j.issn.1002-6819.2016.03.019

    Zhou Rurui,Lu Di,Wang Bende,et al.Risk analysis of raising reservoir flood limited water level based on Bayes theorem and flood forecast error[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(3):135–141 doi: 10.11975/j.issn.1002-6819.2016.03.019
    [14] Diao Yanfang,Wang Bende.Risk analysis of flood control operation mode with forecast information based on a combination of risk sources[J].Science China Technological Sciences,2010,53(7):1949–1956. doi: 10.1007/s11431-010-3124-3
    [15] Apel H,Thieken A,Merz B,et al.Flood risk assessment and associated uncertainty[J].Natural Hazards and Earth System Sciences,2004,4(2):295–308. doi: 10.5194/nhess-4-295-2004
    [16] 丁大发,吴泽宁,贺顺德,等.基于汛限水位选择的水库防洪调度风险分析[J].水利水电技术,2005,36(3):58–61. doi: 10.3969/j.issn.1000-0860.2005.03.017

    Ding Dafa,Wu Zening,He Shunde,et al.Risk analysis on reservoir flood control operation based on selection of flood control level[J].Water Resources and Hydropower Engineering,2005,36(3):58–61 doi: 10.3969/j.issn.1000-0860.2005.03.017
    [17] 冯平,徐向广,温天福,等.考虑洪水预报误差的水库防洪控制调度的风险分析[J].水力发电学报,2009,28(3):47–51.

    Feng Ping,Xu Xiangguang,Wen Tianfu,et al.Risk analysis of researvoir operation with considering flood forecast error[J].Journal of Hydroelectric Engineering,2009,28(3):47–51
    [18] Chen Lu,Singh V P,Lu Weiwei,et al.Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation[J].Journal of Hydrology,2016,540:712–726. doi: 10.1016/j.jhydrol.2016.06.015
    [19] Chen Juan,Zhong Pingan,An Ru,et al.Risk analysis for real-time flood control operation of a multi-reservoir system using a dynamic Bayesian network[J].Environmental Modelling & Software,2019,111:409–420.
    [20] Li He,Liu Pan,Guo Shenglian,et al.Hybrid two-stage stochastic methods using scenario-based forecasts for reservoir refill operations[J].Journal of Water Resources Planning and Management,2018,144(12):4018080. doi: 10.1061/(ASCE)WR.1943-5452.0001013
    [21] Zhao Tongtiegang,Cai Ximing,Yang Dawen.Effect of streamflow forecast uncertainty on real-time reservoir operation[J].Advances in Water Resources,2011,34(4):495–504. doi: 10.1016/j.advwatres.2011.01.004
    [22] Bourdin D R,Nipen T N,Stull R B.Reliable probabilistic forecasts from an ensemble reservoir inflow forecasting system[J].Water Resources Research,2014,50(4):3108–3130. doi: 10.1002/2014WR015462
    [23] Wang Fuxing,Wang Lei,Zhou Huicheng,et al.Ensemble hydrological prediction-based real-time optimization of a multiobjective reservoir during flood season in a semiarid basin with global numerical weather predictions[J].Water Resources Research,2012,48(7):W7520.
    [24] Deng Chao,Liu Pan,Liu Yue,et al.Integrated hydrologic and reservoir routing model for real-time water level forecasts[J].Journal of Hydrologic Engineering,2015,20(9):5014032. doi: 10.1061/(ASCE)HE.1943-5584.0001138
    [25] Liu Pan,Li Liping,Chen Gaojie,et al.Parameter uncertainty analysis of reservoir operating rules based on implicit stochastic optimization[J].Journal of Hydrology,2014,514:102–113. doi: 10.1016/j.jhydrol.2014.04.012
    [26] Simonovic S P,Burn D H.An improved methodology for short-term operation of a single multipurpose reservoir[J].Water Resources Research,1989,25(1):1–8. doi: 10.1029/WR025i001p00001
    [27] Zhao Tongtiegang,Yang Dawen,Cai Ximing,et al.Identifying effective forecast horizon for real-time reservoir operation under a limited inflow forecast[J].Water Resources Research,2012,48(1):W1540.
    [28] Yang Guang,Guo Shenglian,Li Liping,et al.Multi-objective operating rules for Danjiangkou reservoir under climate change[J].Water Resources Management,2016,30(3):1183–1202. doi: 10.1007/s11269-015-1220-7
    [29] Xu Yueping,Yu Chaofeng,Zhang Xujie,et al.Design rainfall depth estimation through two regional frequency analysis methods in Hanjiang River Basin,China[J].Theoretical and Applied Climatology,2012,107(3/4):563–578. doi: 10.1007/s00704-011-0497-6
    [30] 刘招,黄强,于兴杰,等.基于6h预报径流深的安康水库防洪预报调度方案研究[J].水力发电学报,2011,30(2):4–10.

    Liu Zhao,Huang Qiang,Yu Xingjie,et al.Study on flood control forecasting operation plan of Ankang Reservoir based on 6h forecast runoff depth[J].Journal of Hydroelectric Engineering,2011,30(2):4–10
    [31] 尹家波,刘松,胡永光,等.潘口水库汛期水位动态控制研究[J].水资源研究,2014,3(5):386–394. doi: 10.12677/JWRR.2014.35047

    Yin Jiabo,Liu Song,Hu Yongguang,et al.Dynamic control of Pankou Reservoir water level during flood season[J].Journal of Water Resources Research,2014,3(5):386–394 doi: 10.12677/JWRR.2014.35047
    [32] 段唯鑫,郭生练,张俊,等.丹江口水库汛期水位动态控制方案研究[J].人民长江,2018,49(1):7–12.

    Duan Weixin,Guo Shenglian,Zhang Jun,et al.Study on the dynamic control scheme of Danjiangkou Reservoir water level during flood season[J].Yangtze River,2018,49(1):7–12
    [33] 余蔚卿,饶光辉,孟明星.三里坪水利水电枢纽防洪效果分析[J].人民长江,2012,43(6):20–22. doi: 10.3969/j.issn.1001-4179.2012.06.007

    Yu Weiqin,Rao Guanghui,Meng Mingxing.Analysis on flood control effect of Sanliping water conservancy and hydropower project[J].Yangtze River,2012,43(6):20–22 doi: 10.3969/j.issn.1001-4179.2012.06.007
    [34] 刘德波.鸭河口水库兴利水位设计与运用分析[J].人民长江,2012,43(增刊1):11–15. doi: 10.16232/j.cnki.1001-4179.2012.s1.038

    Liu Debo.Design and operation analysis of the water level of the Yahekou Reservoir[J].Yangtze River,2012,43(Supp1):11–15 doi: 10.16232/j.cnki.1001-4179.2012.s1.038
    [35] 邱天珍.鸭河口水库雨洪资源利用与效益分析[J].河南水利与南水北调,2011(2):16–18.

    Qiu Tianzhen.Utilization and benefit analysis of rainwater resources in Yahekou Reservoir[J].Henan Water Resources & South-to-North Water Diversion,2011(2):16–18
图(4)  /  表(1)

本文结构

    /

    返回文章
    返回