坡面植被覆盖度对泥沙输移的影响特性

孙一 刘晓燕 田勇 伊晓燕 王协康

孙一, 刘晓燕, 田勇, 等. 坡面植被覆盖度对泥沙输移的影响特性 [J]. 工程科学与技术, 2022, 54(5): 12-18. doi: 10.15961/j.jsuese.202100643
引用本文: 孙一, 刘晓燕, 田勇, 等. 坡面植被覆盖度对泥沙输移的影响特性 [J]. 工程科学与技术, 2022, 54(5): 12-18. doi: 10.15961/j.jsuese.202100643
SUN Yi, LIU Xiaoyan, TIAN Yong, et al. Effects of Slope Vegetation Coverage on Sediment Transport [J]. Advanced Engineering Sciences, 2022, 54(5): 12-18. doi: 10.15961/j.jsuese.202100643
Citation: SUN Yi, LIU Xiaoyan, TIAN Yong, et al. Effects of Slope Vegetation Coverage on Sediment Transport [J]. Advanced Engineering Sciences, 2022, 54(5): 12-18. doi: 10.15961/j.jsuese.202100643

坡面植被覆盖度对泥沙输移的影响特性

基金项目: 国家重点研发计划项目(2018YFC0407801;2016YFC0402403);国家自然科学基金青年科学基金项目(51809107);中央级公益性科研院所基本科研业务费专项(HKY–JBYW–2020–10)
详细信息
    • 收稿日期:  2021-07-02
    • 网络出版时间:  2022-07-27 02:56:26
  • 作者简介:

    孙一(1983—),男,高级工程师,博士. 研究方向:流域泥沙及河流管理. E-mail:sunyi031@163.com

  • 中图分类号: TV131.2

Effects of Slope Vegetation Coverage on Sediment Transport

  • 摘要: 植被恢复是黄土高原产沙大幅减小的重要原因之一。为探究坡面植被覆盖度对泥沙输移的影响,采用理论分析和野外小区试验相结合的方法,分析了植被覆盖度与坡面输沙率之间的关系。基于Einstein泥沙运动理论,从泥沙运动的角度对坡面泥沙颗粒的运动过程进行理论分析,建立了坡面相对输沙率与植被覆盖度间的关系式;通过野外径流冲刷试验对该关系式予以验证,试验共设置6个流量级(流量范围在0.14~1.40 L·s–1之间,分别为0.14、0.28、0.56、0.83、1.11、1.40 L·s–1)、8个植被覆盖度(0、20%、30%、40%、50%、60%、80%、100%),共48组试验。结果表明:计算值较实测值整体偏大,大流量条件下计算值与实测值吻合较好,小流量条件下计算值与实测值有一定的偏差。综合理论与试验分析可知:植被对输沙能力的影响与植被覆盖度、植被株径和泥沙粒径有关;在相同的坡面地形及植被覆盖度条件下,株径较小的植被比株径较大的植被更有利于减沙;同一种植被,在泥沙粒径较粗的地区减沙效果更为明显,只需达到一个较小的覆盖度,便可以开始发挥有效的减沙效益;在植被覆盖度较低时,发挥有效减沙效果的覆盖度阈值由坡面泥沙粒径和植被株径决定。

     

    Abstract: Vegetation restoration is one of the important reasons for the decrease of sediment yield in the Loess Plateau. To explore the effect of vegetation coverage on sediment transport, the relationship between vegetation coverage and sediment transport rate was analyzed by combining the theoretical analysis and the field plot experiment. Based on the Einstein’s theory of sediment movement, the movement process of sediment particles on slope surface was analyzed theoretically from the perspective of sediment movement, and the relationship between slope relative sediment transport rate and vegetation coverage was established. The field runoff scour experiments were carried out to verify the formula. Six flow levels (flow range 0.14~1.40 L·s–1, including 0.14, 0.28, 0.56, 0.83, 1.11 and 1.40 L·s–1) and eight vegetation coverage levels (0, 20%, 30%, 40%, 50%, 60%, 80%, 100%) were set for 48 groups of experiments. The results showed that the calculated value was larger than the measured value; under the condition of large flow, the calculated value was in good agreement with the measured value; there was a certain deviation between the calculated value and the measured value under the condition of small flow. Based on the analyses of theory and test, the influence of vegetation on sediment transport capacity was related to vegetation coverage, plant diameter and sediment particle size. Under the same slope topography and vegetation coverage, the vegetation with smaller plant diameter was more beneficial to sediment reduction than the vegetation with larger plant diameter. In the area with coarser sediment particle size, the effect of slope vegetation on sediment reduction was more obvious, and the same planting only needed to reach a small coverage, then it could start to play an effective effect on sediment reduction. When the vegetation coverage was low, the coverage threshold for the effective effect of sediment reduction was determined by the particle size of sediment and the plant diameter of vegetation.

     

  • 近年来,黄河泥沙大幅减少,减幅接近90%[1],主要原因在于泥沙主要来源区黄土高原的产沙环境发生了显著变化。黄河主要产沙区的林草梯田有效覆盖率已由1978年的不足18%提高至2018年的超过60%[2]。由此可见,研究植被对坡面产沙的作用具有重要意义。

    植被减水减沙作用相关研究已有大量成果[3-6],如:植被冠叶消减雨滴的动能,降低雨滴的溅蚀效果,减小了对坡面土壤的侵蚀作用[7];植被的截流作用减小产流,从而减少产沙量[8];地表植被减缓水流速度,减小了土壤的水蚀作用,直接降低水流带走泥沙的能力[9];植被地下根系增大土壤渗透性及生物固土效果,从而增大土壤抗蚀性[10];枯落物的覆盖效果增大水流阻力,减小坡面产沙[11];达到一定覆盖度的植被能够对泥沙起动流速产生一定影响并改变局部床面地形,从而减少输沙量[12]

    植被覆盖度是表示坡面上植被多少的一个重要参数。通过分析植被覆盖度与流域产沙量的关系可知:当植被覆盖度小于30%时,流域产沙量随植被覆盖度的减少而迅速加剧[13];当植被覆盖度大于70%时,流域产沙量趋于稳定[14]。更进一步地,当林草有效覆盖率小于20%时,植被的减沙作用不太稳定;当林草有效覆盖率达到55%~65%时,植被可以有效遏制流域产沙,且该覆盖率在不同区域的取值不尽相同[15],类似成果也常有报道[16-17]。可见,植被覆盖度是影响流域产沙量的一个重要指标。为此,学者们专门针对植被覆盖度这一指标进行了坡面水沙运动方面的研究[18-22]。Zhang等[23]给出了植被覆盖度与坡面流阻力系数关系式,植被覆盖度以指数形式存在于公式中。Shang等[24]采用植被密度表示植被覆盖度,认为坡面粗糙高度与植被密度具有线性关系。孙一等[25-26]通过水槽和小区试验,拟合了考虑植被覆盖度的指数形式的坡面流速公式和输沙率公式。Cai等[27]通过水槽试验数据,采用多元非线性回归拟合出植被覆盖下的阻力系数公式,该公式中,植被覆盖度、雷诺数、流量以乘积的形式出现。

    然而,现有成果多是由资料分析中得出的偏经验性的结论,所得成果以拟合关系式居多。为此,本文从泥沙运动的角度出发,基于Einstein泥沙运动理论,分析了植被覆盖度对坡面泥沙输移的影响程度,研究成果可从理论层面阐明黄土高原植被覆盖度的有效减沙作用阈值。

    采用无量纲输沙强度Φ表示输沙率 $ {g}_{{\rm{b}}} $

    $$ \varPhi =\frac{{g}_{\mathrm{b}}}{{\gamma }_{\mathrm{s}}}{\left(\frac{\gamma }{{\gamma }_{\mathrm{s}}-\gamma }\right)}^{1/2}{\left(\frac{1}{g{D}^{3}}\right)}^{1/2} $$ (1)

    式中: $\varPhi$ 为输沙强度; $ {g}_{\mathrm{b}} $ 为输沙率,kg·s–1 $ g $ 为重力加速度,m·s–2 $\gamma_{\rm{s}} 、\gamma $ 分别为泥沙、水的容重,N·m–3D为粒径,mm。

    根据Einstein泥沙运动理论,床面泥沙运动的全过程可描述为运动—静止—再运动,输沙率实际上取决于泥沙颗粒在床面上停留时间的长短。对于一个特定的沙粒,其进入运动状态或沉积下来的概率在床面各处都相同。任意沙粒在两次连续沉积之间的平均运动距离λDλ≈100)取决于沙粒的大小、形状,与水流条件无关。因此,无植被时的输沙率公式可写成:

    $$ \varPhi =\frac{P}{{A}_{*}\left(1-P\right)} $$ (2)

    式中: ${A}_{*} $ 为系数,与泥沙形状、运动有关;P为泥沙运动的概率。

    借鉴河道输沙率的概念,对植被变化与坡面输沙率之间的关系进行分析。坡面上的植被可能阻挡、拦截处于运动状态的泥沙,迫使其停留下来,从而改变泥沙的平均运动距离。考虑概化后的一块局部床面(图1),该床面上4个相邻植株的平均间距为l1,株间空隙距离为l0,植株的平均株径为Dv,则该局部床面的植被覆盖度 $ Vc=\dfrac{1}{4}{\text{π}} {D}_{\mathrm{v}}^{2}/{l}_{1}^{2} $ 。令 $ \eta = {D}_{\mathrm{v}}/D $ 为植株与泥沙颗粒的相对大小,则有:

    图  1  局部坡面示意图
    Fig.  1  Diagram of local slope surface
    下载: 全尺寸图片
    $$ {l}_{1}=\sqrt{\frac{{\text{π}} }{4Vc}}\eta D $$ (3)
    $$ {l}_{0}=\left(\sqrt{\frac{{\text{π}} }{2Vc}}-1\right)\eta D $$ (4)

    ${\lambda }_{0}=\left(\sqrt{\dfrac{{\text{π}} }{2Vc}}-1\right)\eta$ ,则 $ {l}_{0}={\lambda }_{0}D $

    1)若 $ {l}_{0}\ge \lambda D $ ,说明泥沙颗粒在一个运动—沉积周期中不会因碰到植被而被迫停下,即输沙率仍可按式(2)计算。

    2)若 $ {l}_{0} < \lambda D $ ,说明泥沙颗粒在一个运动—沉积周期中会因碰到植被而停下,也即沙粒两次连续沉积间的平均运动距离应用l0代替。那么,单位面积泥沙沉积率为 $ {g}_{\mathrm{b}}\left(1-P\right)/{l}_{0} $ ,冲刷率为 $\dfrac{\lambda }{{A}_{\mathrm{*}}}P{\gamma }_{\mathrm{s}}{g}^{\frac{1}{2}}{D}^{\frac{1}{2}}{\left(\dfrac{{\gamma }_{\mathrm{s}}-\gamma }{\gamma }\right)}^{\frac{1}{2}}$ ,由输沙平衡条件可得出:

    $$ {\varPhi }{{{'}}}=\frac{{\lambda }_{0}}{\lambda }\cdot\frac{P}{{A}_{\mathrm{*}}\left(1-P\right)} $$ (5)
    $$ \frac{{\varPhi }{{{'}}}}{\varPhi }=\frac{{\lambda }_{0}}{\lambda }=\left(\sqrt{\frac{{\text{π}} }{2Vc}}-1\right)\frac{\eta }{\lambda } $$ (6)

    式(5)~(6)中: ${{\varPhi }{{'}}} $ 为有植被时的坡面输沙率; $\dfrac{{\varPhi }{{'}}}{\varPhi }$ 为相对输沙率,表示有植被的坡面输沙率与无植被坡面输沙率的比值。由于 $ \eta ={D}_{\mathrm{v}}/D $ 为植株与泥沙颗粒的相对大小,因此, $\dfrac{{\varPhi }{{'}}}{\varPhi }$ 仅与植被覆盖度Vc、株径Dv、泥沙粒径D有关,且该比值的取值范围应为[0,1]。由此可以得出:

    1)当 $\dfrac{{\varPhi }{{'}}}{\varPhi }=0$ 时,表示植被理论上能够拦截所有泥沙,此时,Vc=157%,显然不符合植被覆盖度最大为100%的常识,因此植被无法完全阻止泥沙的输移。

    2)当 $\dfrac{{\varPhi }{{'}}}{\varPhi }=1$ 时,植被理论上对坡面输沙不起作用,此时 $Vc=\dfrac{{\text{π}} }{2{\left(\dfrac{100D}{{D}_{\mathrm{v}}}+1\right)}^{2}}$ 。因此,植被覆盖度至少要大于此值,植被才能发挥出有效的减沙作用,这可作为植被覆盖度的有效减沙阈值。

    图23分别为固定泥沙粒径(D=0.05 mm)条件、不同株径Dv下的植被覆盖度–相对输沙率变化曲线及固定株径(Dv=3 mm)条件、不同泥沙粒径D下的植被覆盖度–相对输沙率变化曲线。由图23可知:对于某一特定的泥沙粒径,在植被覆盖度相同的条件下,株径越细小,植被的减沙作用越显著;株径越大,植被发挥相同减沙作用所需达到的覆盖度越大。对于某一特定的株径,其对粗泥沙的减沙效果大于细泥沙。

    图  2  不同株径下的相对输沙率随植被覆盖度的变化曲线
    Fig.  2  Variation curves of relative sediment transport rate with vegetation coverage under different plant diameters
    下载: 全尺寸图片
    图  3  不同粒径下的相对输沙率随植被覆盖度的变化曲线
    Fig.  3  Variation curves of relative sediment transport rate with vegetation coverage under different grain sizes
    下载: 全尺寸图片

    采用野外径流冲刷试验对式(6)进行验证。试验地点在黄河水土保持西峰治理监督局南小河沟试验场。选取一个天然坡面建造径流试验区,坡度为15°,如图4所示。试验区由多个宽1 m、长20 m的坡道组成,每个坡道上按一定的覆盖度人工种植苜蓿。覆盖度范围为0~100%,取0、20%、30%、40%、50%、60%、80%、100%共8个等级。图5为部分典型植被覆盖度的照片。坡道上游为进水口,设置6个不同的流量级,范围在0.14~1.40 L·s–1,分别为0.14、0.28、0.56、0.83、1.11、1.40 L·s–1;坡道下游出口处每3 min取样一次含沙量及试验总水量。试验共计进行48组坡面径流冲刷组次。

    图  4  试验小区示意图及照片
    Fig.  4  Schematic diagram and photos of the test area
    下载: 全尺寸图片
    图  5  部分典型植被覆盖度的照片
    Fig.  5  Photographs of some typical vegetation coverage
    下载: 全尺寸图片

    采用电磁流量计对流量进行测量,待流量稳定后,读取坡道进口处电磁流量计的读数;在坡道出口处收集一定时间内的水量,用 $ Q={V}_{\mathrm{w}}/t $ 进行复核(Q为径流流量,L·s–1Vw为水的体积,L;t为接水时间,s)。采用比重瓶法测定含沙量。试验中,自水流流出坡道时开始,每3 min采集1次浑水样本,每次试验共采集6次浑水样本。

    图6为典型流量Q=1.40 L·s–1条件下,不同植被覆盖度的实测含沙量变化过程。由图6可知,坡面流含沙量总体上随着植被覆盖度的增大而显著减小,最后趋于稳定。造成含沙量这种变化趋势的原因是:试验初期,坡面上已经受到侵蚀的土壤最容易被水流带走,导致试验前期的含沙量较大;随着水流的持续冲刷,这部分已侵蚀的土壤逐渐被水流带走,新的土壤出露,但由于粗化现象及植被等多种作用,其相对不易被水流侵蚀,因此含沙量逐渐减小并趋于稳定。此外,当植被覆盖度小于60%时,含沙量随试验时间变化较为明显;当植被覆盖度大于60%时,含沙量很小,且几乎没有明显变化。

    图  6  Q=1.40 L·s–1流量下不同植被覆盖度的实测含沙量变化过程
    Fig.  6  Change process of measured sediment concentration under different vegetation coverage at flow discharge Q=1.40 L·s–1
    下载: 全尺寸图片

    图7为野外径流冲刷试验不同流量下各组次平均含沙量随植被覆盖度的变化。由图7可知:随着植被覆盖度的增大,含沙量呈现出明显的减小趋势;当植被覆盖度达到60%时,含沙量就非常小了。

    图  7  不同流量下平均含沙量随植被覆盖度的变化
    Fig.  7  Variation of average sediment concentration with vegetation coverage under different flow rates
    下载: 全尺寸图片

    对于恒定流试验,可将输沙率 $ {g}_{{\rm{b}}} $ 转换成平均含沙量C进行分析,即:

    $$ C={g}_{\mathrm{b}}/Q $$ (7)

    根据本次野外试验的实际情况,苜蓿的株径在1~2 mm左右,坡面表层泥沙中值粒径为0.06 mm。故而取Dv=1.5 mm,D=0.06 mm。按照式(6)即可得到相应的相对输沙率 $\dfrac{{\varPhi }{{'}}}{\varPhi }$ ,并采用式(7)转化为平均含沙量后,与试验资料进行对比。

    图8为本次径流冲刷试验最大流量Q=1.40 L·s–1、中等流量Q=0.83 L·s–1及最小流量Q=0.14 L·s–1这3个典型流量下的含沙量实测值与计算值的对比。由图8可知:在大流量条件下,计算值与实测值吻合较好;在小流量条件下,计算值与实测值有一定偏差,尤其在植被覆盖度较小的情况,偏差较大。同时,计算值较实测值在整体上也偏大。其原因在于,由于式(6)仅由植被覆盖度Vc、株径Dv、泥沙粒径D决定,与水流条件无关,参考艾里定律,河流中推移质的重量与水流速度的6次方成正比,流量Q的减小及植被的增阻作用势必导致流速降低,进而导致水流强度减弱,实际输沙率也将会进一步减小。

    图  8  不同流量条件下含沙量计算值与实测值对比
    Fig.  8  Comparison between calculated and measured values under the conditions of different flow discharge
    下载: 全尺寸图片

    基于理论分析和野外径流冲刷试验,研究了坡面植被覆盖度对泥沙输移的影响特性,结果表明:

    1)基于Einstein泥沙运动理论得到的坡面输沙率公式,植被对输沙能力的影响与植被覆盖度Vc、株径Dv、泥沙粒径D有关,可用 $\left(\sqrt{\dfrac{{\text{π}} }{2Vc}}-1\right)\dfrac{\eta }{\lambda }$ 表示,其中 $ \eta ={D}_{\mathrm{v}}/D $

    2)由本文的坡面输沙率公式可得出:在相同的坡面地形及植被覆盖度条件下,株径较小的植被较株径较大的植被更有利于减沙;在粒径较粗的粗泥沙来源区,坡面植被的减沙效果更为明显,同一种植被在粗泥沙来源区的坡面上只需达到一个较小的覆盖度,便可以开始发挥有效的减沙效益;在植被覆盖度较低时,发挥有效减沙效果的覆盖度阈值由坡面泥沙粒径和植被株径决定。

    3)本文的坡面输沙率公式的计算值较试验实测值在大流量条件下的吻合较好,在小流量条件下有一定偏差。其原因在于,公式中没有考虑植被覆盖度对水流强度的影响,仍有待于进一步深入研究。

  • 图  1   局部坡面示意图

    Fig.  1   Diagram of local slope surface

    下载: 全尺寸图片

    图  2   不同株径下的相对输沙率随植被覆盖度的变化曲线

    Fig.  2   Variation curves of relative sediment transport rate with vegetation coverage under different plant diameters

    下载: 全尺寸图片

    图  3   不同粒径下的相对输沙率随植被覆盖度的变化曲线

    Fig.  3   Variation curves of relative sediment transport rate with vegetation coverage under different grain sizes

    下载: 全尺寸图片

    图  4   试验小区示意图及照片

    Fig.  4   Schematic diagram and photos of the test area

    下载: 全尺寸图片

    图  5   部分典型植被覆盖度的照片

    Fig.  5   Photographs of some typical vegetation coverage

    下载: 全尺寸图片

    图  6   Q=1.40 L·s–1流量下不同植被覆盖度的实测含沙量变化过程

    Fig.  6   Change process of measured sediment concentration under different vegetation coverage at flow discharge Q=1.40 L·s–1

    下载: 全尺寸图片

    图  7   不同流量下平均含沙量随植被覆盖度的变化

    Fig.  7   Variation of average sediment concentration with vegetation coverage under different flow rates

    下载: 全尺寸图片

    图  8   不同流量条件下含沙量计算值与实测值对比

    Fig.  8   Comparison between calculated and measured values under the conditions of different flow discharge

    下载: 全尺寸图片
  • [1] Wang Shuai,Fu Bojie,Piao Shilong,et al.Reduced sediment transport in the Yellow River due to anthropogenic changes[J].Nature Geoscience,2016,9(1):38–41. doi: 10.1038/ngeo2602
    [2] 刘晓燕,王瑞玲,张原锋,等.黄河河川径流利用的阈值[J].水利学报,2020,51(6):631–641. doi: 10.13243/j.cnki.slxb.20190765

    Liu Xiaoyan,Wang Ruiling,Zhang Yuanfeng,et al.Threshold of the runoff utilization of the Yellow River[J].Journal of Hydraulic Engineering,2020,51(6):631–641 doi: 10.13243/j.cnki.slxb.20190765
    [3] 彭清娥,刘兴年,黄尔,等.植被对坡面汇流时间影响的试验研究[J].工程科学与技术,2018,50(3):185–192. doi: 10.15961/j.jsuese.201800194

    Peng Qing’e,Liu Xingnian,Huang Er,et al.Experimental study on the flow concentration influenced by vegetation[J].Advanced Engineering Sciences,2018,50(3):185–192 doi: 10.15961/j.jsuese.201800194
    [4] Pan Chengzhong,Ma Lan,Wainwright J,et al.Overland flow resistances on varying slope gradients and partitioning on grassed slopes under simulated rainfall[J].Water Resources Research,2016,52(4):2490–2512. doi: 10.1002/2015WR018035
    [5] Hueso–González P,Ruiz–Sinoga J D,Martínez–Murillo J F,et al.Overland flow generation mechanisms affected by topsoil treatment:Application to soil conservation[J].Geomorphology,2015,228:796–804. doi: 10.1016/j.geomorph.2014.10.033
    [6] Ribolzi O,Evrard O,Huon S,et al.From shifting cultivation to teak plantation:Effect on overland flow and sediment yield in a montane tropical catchment[J].Scientific Reports,2017,7(1):225–238. doi: 10.1038/s41598-017-04385-2
    [7] Michaelides K,Lister D,Wainwright J,et al.Vegetation controls on small-scale runoff and erosion dynamics in a degrading dryland environment[J].Hydrological Processes,2010,23(11):1617–1630. doi: 10.1002/hyp.7293
    [8] 贾莲莲,李占斌,李鹏,等.黄土区野外模拟降雨条件下坡面径流–产沙试验研究[J].水土保持研究,2010,17(1):1–5.

    Jia Lianlian,Li Zhanbin,Li Peng,et al.Study on rainfall runoff–sediment yield under modeling rain condition in the Loess Plateau[J].Research of Soil and Water Conservation,2010,17(1):1–5
    [9] 王栋栋,王占礼,张庆玮,等.草地植被覆盖度坡度及雨强对坡面径流含沙量影响试验研究[J].农业工程学报,2017,33(15):119–125. doi: 10.11975/j.issn.1002-6819.2017.15.015

    Wang Dongdong,Wang Zhanli,Zhang Qingwei,et al.Experiment on influence of cover degree,slope and rainfall intensity on sediment concentration of slope runoff in rangeland[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(15):119–125 doi: 10.11975/j.issn.1002-6819.2017.15.015
    [10] García–Serrana M,Gulliver J S,Nieber J L.Infiltration capacity of roadside filter strips with non-uniform overland flow[J].Journal of Hydrology,2017,545:451–462. doi: 10.1016/j.jhydrol.2016.12.031
    [11] 常玉,余新晓,陈丽华,等.模拟降雨条件下林下枯落物层减流减沙效应[J].北京林业大学学报,2014,36(3):69–74. doi: 10.13332/j.cnki.jbfu.2014.03.010

    Chang Yu,Yu Xinxiao,Chen Lihua,et al.Effects of undergrowth litter layer on runoff and sediment reduction under simulated rainfall conditions[J].Journal of Beijing Forestry University,2014,36(3):69–74 doi: 10.13332/j.cnki.jbfu.2014.03.010
    [12] 薛万云,吴时强,吴修锋,等.刚性植被区域床面泥沙起动特性[J].水科学进展,2017,28(6):849–857. doi: 10.14042/j.cnki.32.1309.2017.06.006

    Xue Wanyun,Wu Shiqiang,Wu Xiufeng,et al.Sediment incipient motion on movable bed in rigid vegetation environment[J].Advances in Water Science,2017,28(6):849–857 doi: 10.14042/j.cnki.32.1309.2017.06.006
    [13] Zhao Chunhong,Gao Jianen,Zhang Mengjie,et al.Sediment deposition and overland flow hydraulics in simulated vegetative filter strips under varying vegetation covers[J].Hydrological Processes,2016,30(2):163–175. doi: 10.1002/hyp.10556
    [14] 卢金发,黄秀华.黄河中游地区流域产沙中的地貌临界现象[J].山地学报,2004,22(2):147–153. doi: 10.16089/j.cnki.1008-2786.2004.02.003

    Lu Jinfa,Huang Xiuhua.Thresholds in variation of sediment yield in the middle Yellow River basin[J].Journal of Mountain Science,2004,22(2):147–153 doi: 10.16089/j.cnki.1008-2786.2004.02.003
    [15] 刘晓燕,党素珍,高云飞,等.黄土丘陵沟壑区林草变化对流域产沙影响的规律及阈值[J].水利学报,2020,51(5):505–518. doi: 10.13243/j.cnki.slxb.20190867

    Liu Xiaoyan,Dang Suzhen,Gao Yunfei,et al.The rule and threshold of the effect of vegetation change on sediment yield in the loess hilly region,China[J].Journal of Hydraulic Engineering,2020,51(5):505–518 doi: 10.13243/j.cnki.slxb.20190867
    [16] 汪明霞,王卫东,张鹏飞.黄土高原典型区降雨植被耦合对侵蚀产沙影响的临界研究[J].中国水土保持,2014(3):32–34. doi: 10.14123/j.cnki.swcc.2014.03.013

    Wang Mingxia,Wang Weidong,Zhang Pengfei.Critical study on influence of precipitation and vegetation coupling of typical area in the Loess Plateau to erosion and sediment yield[J].Soil and Water Conservation in China,2014(3):32–34 doi: 10.14123/j.cnki.swcc.2014.03.013
    [17] 李建明,程冬兵,张长伟,等.三种水土保持措施下红壤坡地径流产沙特性[J].水利水电技术,2017,48(11):199–205. doi: 10.13928/j.cnki.wrahe.2017.11.033

    Li Jianming,Cheng Dongbing,Zhang Changwei,et al.Study on runoff and sediment yield characteristics of red-soil slope land under three water-soil conservation measures[J].Water Resources and Hydropower Engineering,2017,48(11):199–205 doi: 10.13928/j.cnki.wrahe.2017.11.033
    [18] 杨帆,张宽地,杨明义,等.植被淹没程度对坡面流水动力学特性影响[J].水科学进展,2016,27(6):832–840. doi: 10.14042/j.cnki.32.1309.2016.06.005

    Yang Fan,Zhang Kuandi,Yang Mingyi,et al.Experimental study on hydraulic characteristic of submergence degree to flow under vegetation coverage[J].Advances in Water Science,2016,27(6):832–840 doi: 10.14042/j.cnki.32.1309.2016.06.005
    [19] 叶龙,王玉林,刘兴年,等.不同人工植被分布条件下坡面水流动力学特性试验研究[J].四川大学学报(工程科学版),2014,46(2):42–48. doi: 10.15961/j.jsuese.2014.s2.008

    Ye Long,Wang Yulin,Liu Xingnian,et al.Experimental study on effects of different artificial vegetation distribution on overland flow[J].Journal of Sichuan University(Engineering Science Edition),2014,46(2):42–48 doi: 10.15961/j.jsuese.2014.s2.008
    [20] 张宽地,王光谦,孙晓敏,等.模拟植被覆盖条件下坡面流水动力学特性[J].水科学进展,2014,25(6):825–834. doi: 10.14042/j.cnki.32.1309.2014.06.009

    Zhang Kuandi,Wang Guangqian,Sun Xiaomin,et al.Hydraulic characteristic of overland flow under different vegetation coverage[J].Advances in Water Science,2014,25(6):825–834 doi: 10.14042/j.cnki.32.1309.2014.06.009
    [21] 王协康,刘同宦,叶龙,等.坡面柔性植被阻水效应及其局部水头损失特性试验研究[J].四川大学学报(工程科学版),2013,45(2):22–27. doi: 10.15961/j.jsuese.2013.02.006

    Wang Xiekang,Liu Tonghuan,Ye Long,et al.Experimental study on the effects of flexible vegetation on hydraulic characteristics and local head losses of overland flow[J].Journal of Sichuan University(Engineering Science Edition),2013,45(2):22–27 doi: 10.15961/j.jsuese.2013.02.006
    [22] 闫旭峰,周苏芬,黄尔,等.植被条件下坡面薄层水流动力学特性试验研究[J].四川大学学报(工程科学版),2012,44(2):26–30.

    Yan Xufeng,Zhou Sufen,Huang Er,et al.Experimental study on the effects of vegetation on hydraulic characteristics of overland flow[J].Journal of Sichuan University(Engineering Science Edition),2012,44(2):26–30
    [23] Zhang Kuandi,Wang Zhigang,Wang Guangqian,et al.Overland-flow resistance characteristics of nonsubmerged vegetation[J].Journal of Irrigation and Drainage Engineering,ASCE,2017,143(8):04017021. doi: 10.1061/(ASCE)IR.1943-4774.0001196
    [24] Shang Haixin,Zhang Kuandi,Wang Zhengzhong,et al.Effect of varying wheatgrass density on resistance to overland flow[J].Journal of Hydrology,2020,591:125594. doi: 10.1016/J.JHYDROL.2020.125594
    [25] 孙一,田勇,刘晓燕,等.坡面水流流速对贴地植被的响应特性试验研究[J].工程科学与技术,2019,51(2):85–89. doi: 10.15961/j.jsuese.201800418

    Sun Yi,Tian Yong,Liu Xiaoyan,et al.Experimental study on the response characteristics of the velocity of overland flow to the ground vegetation[J].Advanced Engineering Sciences,2019,51(2):85–89 doi: 10.15961/j.jsuese.201800418
    [26] 孙一,刘晓燕,田勇,等.坡面水沙运动对植被覆盖度的响应特性试验研究[J].应用基础与工程科学学报,2020,28(3):632–641. doi: 10.16058/j.issn.1005-0930.2020.03.011

    Sun Yi,Liu Xiaoyan,Tian Yong,et al.Experimental study on the response characteristics of flow-sediment transport on slope to the vegetation coverage[J].Journal of Basic Science and Engineering,2020,28(3):632–641 doi: 10.16058/j.issn.1005-0930.2020.03.011
    [27] Cai Zekang,Wang Jian,Yang Yushuo,et al.Influence of vegetation coverage on hydraulic characteristics of overland flow[J].Water,2021,13(8):1055–1073. doi: 10.3390/W13081055
图(8)

本文结构

    /

    返回文章
    返回