工程科学与技术   2020, Vol. 52 Issue (6): 10-21
青藏高原典型液化型高速远程滑坡形成机制分析
朱雨轩, 戴福初, 梁莲姬     
北京工业大学 建筑工程学院,北京 100124
基金项目: 国家重点研发计划项目(2018YFC1505003)
摘要: 高速远程滑坡作为一种特殊的地质灾害,具有运动速度快、滑动距离远、致灾范围广等特征,一旦发生往往给人类的生命财产带来巨大的损失,因此,针对其超强运动机制的研究一直受到国内外滑坡领域的高度关注。液化减阻作为高速远程滑坡发生超强运动的一个重要机制,强调滑坡运动过程中出现超孔隙水压力累积、有效应力降低等液化行为,导致滑坡基底摩擦系数减小,发生高速远程运动。本文根据前人研究结果对液化的影响因素和高速远程滑坡的液化机制进行总结,将不排水加载作用下滑坡的液化机制归纳为结构液化和滑动带液化两种;并基于详细的现场调查对青藏高原地区两类典型的液化型高速远程滑坡(玉树滑坡和乱石包滑坡)的形成机制进行了初步分析。结果表明:玉树滑坡和乱石包滑坡在启动条件、运动和堆积地貌单元及液化机制等方面均有差异。玉树滑坡为发生于山间沟谷中、由强降雨诱发的崩坡积层滑坡,滑坡体积小但运动距离远,滑带土为堆积于沟谷中的饱和松散砂质黏土(细粒土),可忽略颗粒的剪切破碎性;不排水加载作用破坏了松散的土体结构,从而诱发滑坡液化;乱石包滑坡发生于山前盆地,由古地震触发并斜抛启动,滑带土为风化的花岗岩粗砂,具有剪切易破碎性,土颗粒破碎引起滑动带液化是滑坡发生高速远程运动的主要原因。
关键词: 青藏高原    高速远程滑坡    液化    运动机制    
Analysis on the Formation Mechanism of Rapid and Long Runout Landslides in Liquefaction-type in Tibetan Plateau
ZHU Yuxuan, DAI Fuchu, LIANG Lianji     
College of Architecture and Civil Eng., Beijing Univ. of Technol., Beijing 100124, China
Abstract: As a special landslide hazard, rapid and long runout landslides display high mobility, long runout travel distance and wide damage area, and bring great loss to human life and property, of which dynamic mechanisms have attracted demand attentions of the researchers all over the world. Liquefaction mechanism of landslides was proposed to explain that the formation of excess pore water pressure and the reduction of effective stress lead to the decrease of the friction coefficient of the base and the landslide long runout movement. In this paper, we reviewed the factors affecting the liquefaction intensity and the liquefaction mechanism of the landslides on the basis of previous research, and the mechanisms of the liquefied landslides were generally summarized into two types, i.e., structural liquefaction and sliding zone liquefaction. Based on remote sensing interpretation and field investigation, the preliminary research of the formation mechanisms of two typical liquefied rapid-long-runout landslides named Yushu landslide and Luanshibao landslide in Tibetan Plateau were conducted. Results showed that Yushu and Luanshibao landslides were different in triggering mechanism, movement and accumulation geomorphologic unit, and liquefaction mechanism. Yushu landslide was a collapsed deposit landslide occurring in a mountain valley with a small volume but a long runout distance triggered by heavy rainfall. The sliding zone soil was saturated loose sandy clay (fine grain) accumulated in the gully before landsliding, the particle breakage of which during shearing could be negligible. The liquefaction was mainly induced by destroying the soil structure under undrained loading. Luanshibao landslide was a granite landslide occurring in the piedmont basin triggered by oblique-thrusting during an ancient earthquake, the sliding zone soil of which was saturated loose weathered granite sand having crushability. The sliding zone liquefaction induced by grain crushing was the main reason resulting in its rapid and long runout movement.
Key words: Tibetan Plateau    rapid and long runout landslide    liquefaction    movement mechanism    

国内外大多数学者普遍认为高速滑坡的平均运动速度在20 m/s以上[1],相当于国际地科联组织定义的极迅速级别的滑坡(5~70 m/s)[2];而对滑坡的运动距离,国际上普遍依据等效摩擦系数(高差H和水平运动距离L的比值)来判断,当H/L<0.6(约等于tan 31°,为国际公认的岩质材料摩擦系数经验值)时即认为是远程滑坡,而高速远程滑坡的H/L值一般认为小于0.33[3],这类滑坡具有超高速度、超长滑距及巨大的能量和极端破坏力,一旦发生常常给人类生命和财产造成重大的损失[4-7]

由于高速远程滑坡的突发性和不可预测性,很少有人能够监测到滑坡的运动过程,因此,国内外学者通常借助模型试验和数值模拟的方法研究其运动和堆积特征。模型试验主要包括滑槽试验和相似模拟试验。滑槽试验是通过室内小尺度的试验来研究滑坡材料属性、滑面地形特征及外界动力条件对高速远程滑坡运动特征的影响[8-14];相似模拟试验是通过相似材料模拟滑坡的运动过程,揭示表面堆积地貌(脊、侧积棱和圆丘等)的形成机制,进而反演出滑坡的就位过程[15-18]。模型试验存在对原型的过度简化和不可避免的尺寸效应,无法表现出自然界中的高速远程滑坡所具有的超高速度和难以预料的运动距离,只能从定性的角度揭示此类滑坡的运动和堆积特征。数值模拟具有高效、经济、实用的优点,是预测和反分析高速远程滑坡致灾范围必不可少的工具,一直以来备受研究者青睐。目前用于模拟高速远程滑坡的数值模拟方法可分为连续介质模型、离散介质模型和连续–离散耦合模型。连续介质模型包括有限差分法(FDM)[19-21]、有限体积法(FVM)[22]及光滑粒子流法(SPH)[23-24]等,适用于模拟相对连续的土质滑坡和流态化滑坡;离散介质模型包括离散元法(DEM)[25]和非连续变形分析法(DDA)[26],适用于模拟岩质滑坡;离散与连续介质模型相结合的耦合模型[27-28]主要用于高速远程滑坡涌浪的模拟,但因计算量较大很难应用于实际工程中。

高速远程滑坡超强运动机制问题一直是个难解之谜。为揭示这一现象,国外有许多学者做过研究和探讨,目前主要形成如下几种机制:气体润滑减阻机制[29]、液化减阻机制[30]、岩石动力破碎减阻机制[31]、动量传递减阻机制[32]及声波润滑减阻机制等[33]。其中,液化减阻机制认为滑坡运动过程中出现超孔隙水压力累积、有效应力降低等液化行为,导致基底摩擦系数减小,发生高速远程运动[34-39]。Sassa等[40-42]研发了一系列高速不排水环剪仪,真实地监测出了滑坡运动过程中的超孔隙水压力行为,从而定量地验证了滑坡液化减阻机制的正确性。近年来,研究发现,除了地震等连续、循环荷载能够引起滑坡液化以外,具有强度高、时间短、应力波传播效应强等特点的冲击载荷同样可以引起滑坡液化,并造成孔隙水压力瞬间激增[43]。为了研究此类问题,孟祥跃等[44]通过承砂筒自由下落冲击底部法兰的冲击试验,得到了砂土在冲击荷载下压力波形的变化及其与落高、测点位置等的关系,并探讨了超孔隙水压力与落高、砂样级配及测点位置之间的关系;之后,又借助X光射线观察饱和砂土受冲击后出现的横断裂缝和纵向排水通道的产生、发展及消失,认为这种现象是砂土骨架结构重新排列的结果[45]。傅军健[46]通过改进三轴仪,对砂土进行了冲击试验研究,分析了冲击能、排水条件、土体渗透性等对饱和砂土冲击作用的影响。段钊等[47]以泾阳南塬典型黄土滑坡为地质模型,开展室内冲击试验,研究发现砂质粉土的冲击液化机理是快速冲击作用导致土颗粒骨架结构破坏重组,从而引起其内部孔压快速积累的一种液化行为。

青藏高原作为世界上最年轻、海拔最高的高原[48],其特殊的地质地貌环境和强烈的内、外动力条件孕育了大量的滑坡灾害,吸引了国内外学者的广泛关注,但其中的液化型高速远程滑坡却鲜有报道。本文首先根据前人研究结果对液化的影响因素和高速远程滑坡的液化机制进行总结;然后对青藏高原地区两处典型的液化型高速远程滑坡案例开展详细的现场调查,并初步分析其启动模式和超强运动机制。研究结果可为该地区高速远程滑坡的防灾减灾工作提供科学指导,具有非常重要的工程与实际意义。

1 高速远程滑坡的液化机制

当土体受到剪应力时,其体积有减小的趋势,土颗粒倾向于向更密集的状态排列,导致水被迫从孔隙中排出,如果孔隙水的排出受阻,孔隙水压力会在土体中累积,导致土颗粒间有效应力降低,从而降低土体的抗剪强度[49],这就是土体的液化现象。研究发现土体液化与饱和度、初始孔隙比、渗透系数、颗粒级配、颗粒破碎性及初始应力状态等因素有关[49-53]:非饱和土通常不容易液化,因为体积压缩不会在土体内产生多余的超孔隙水压力;松砂比密砂更容易发生液化,因为疏松的土体更容易发生剪缩;土体中细颗粒含量越多,土体的渗透系数越低,越容易液化,因为生成的超孔隙水压力不容易消散;土颗粒破碎对液化的影响是双重的,其一方面使土体体积收缩促进超孔隙水压力的生成,另一方面生成更多的细颗粒降低土体渗透系数,阻止超孔隙水压力消散,二者均有利于液化发生;初始应力状态主要影响静态液化抗力(峰值抗剪强度与初始抗剪强度之差),静态液化抗力随初始正应力的增大而增大,随初始剪应力的增大而减小,这意味着初始法向应力越低,初始剪应力越高,越容易诱发液化。

对于滑坡液化机制的研究最早始于Seed[54],其指出地震滑坡的破坏机制是饱和松散的砂土在地震作用下,由于孔隙水压力的产生,导致抗剪强度的丧失,引发边坡破坏。这种液化破坏现象通常出现在滑坡的物源区,而滑坡在运动过程中也会产生液化现象。Hutchinson和Bhandari[55]在研究Beltinge泥流时提出不排水加载液化机制,即斜坡土体在不排水条件下受到冲击荷载作用,使土体亚稳定结构破坏,产生超孔隙水压力,降低剪切强度,导致滑坡呈流态化运动。与此观点相通,Sassa等[30,56]在研究日本地区的滑坡–泥石流时,也提出两个类似的冲击液化模型,其原理如图1所示。

图1 滑坡不排水加载示意图(改自Sassa等[56] Fig. 1 Schematic diagram of the undrained loading of the landslide(Modified from Sassa et al[56]

Sassa等[40]在研究阪神地震滑坡时,基于大量不排水环剪试验结果发现了另一种不排水加载作用下的液化现象—滑动面液化,即滑坡高速运动造成剪切带内的土颗粒破碎,导致孔隙水压力不断累积,出现液化现象。Wang[51]通过一系列环剪试验研究了土颗粒破碎对超孔隙水压力产生的影响,发现在不排水条件下颗粒的破碎程度越高,越容易产生超孔隙水压力;当土颗粒无破碎性时,土体基本没有体积变化或超孔隙水压力的变化;并提出滑坡运动过程中,滑坡体与滑床间的相对运动会形成一个剪切带,而非剪切面,因此将滑动面液化修正为滑动带液化[57]

基于前人的研究结果,本文将滑坡不排水加载作用下的液化机制分为结构液化和滑动带液化两类。其中:结构液化是通过破坏饱和松散土体的亚稳定结构,引起土体体积收缩,生成超孔隙水压力,需要土体满足饱和和松散两个条件[57];而滑动带液化与结构液化有着本质的区别,是由于滑动带附近的土颗粒发生破碎,引起土体体积收缩,进而生成超孔隙水压力,所以即使在中密或致密的砂土结构中,如果土颗粒易破碎,也会出现滑动带液化现象[51]。由此可见,在不排水加载作用下,疏松的土体结构和易于破碎的土粒子的存在,都可以引起液化现象的产生,进而导致滑坡高速远程运动。作者在青藏高原地区开展高速远程滑坡野外调查的过程中发现了与这两种液化机制相对应的典型滑坡案例,并基于详细的现场调查对其形成机制进行了初步分析。

2 玉树滑坡 2.1 自然环境条件

玉树滑坡位于青藏高原东侧青海省玉树市境内(北纬32°49′38.11″,东经96°55′15.03″)。研究区属于典型的高原高寒型气候,年均气温2.9 ℃,年均降水量487 mm。研究区内出露两条主要断裂:隆宝湖—玉树断裂和巴塘断裂,这两条断裂为甘孜—玉树断裂玉树段主要的分支断裂。2010年发生的玉树地震是甘孜—玉树活动断裂带的隆宝湖—玉树段突发左旋式走滑错动的结果[58]

研究区内地貌类型以山地和盆地地貌为主,不同地貌类型大致以断层为分界线,隆宝湖—玉树断裂的北东侧为高山地貌,山体平均高差约1 200 m,被河流切割较深且坡度大;隆宝湖—玉树断裂与巴塘断裂带之间为隆宝湖—巴塘中高山宽谷盆地地貌,其中盆地与山地相间,山体陡峭,盆地边缘地势较缓;巴塘断裂南侧为高山地貌,山体平均高差约1 000 m(图2(a)),滑坡全景如图2(b)所示。

图2 玉树滑坡地理位置和全景图 Fig. 2 Location map and panorama of Yushu landslide

2.2 滑坡特征

玉树滑坡位于巴塘盆地南侧的高山沟谷中(图2),Google Earth上目前还没有该滑坡滑后的影像。通过走访村民及查询滑坡历史影像,初步确定该滑坡发生于2017年6月中旬。由图3可知,玉树2017年6月降雨154.7 mm为全年降雨量最多的月份。据当地村民描述,滑坡发生前正下着大雨,故推测该滑坡是由强降雨触发。滑坡垂直高差(H)为565 m,最大水平运动距离(L)为1 800 m,等效视摩擦系数(H/L)为0.31,属于高速远程滑坡。根据滑坡地形特征,可将滑坡分为滑源区、流通区和堆积区,滑坡平面图和剖面图如图4所示。

图3 玉树2017年月降雨量及累计降雨量 Fig. 3 Monthly rainfall and accumulated rainfall in 2017 in Yushu

图4 玉树滑坡平面图和剖面图 Fig. 4 Plan view and profile map of Yushu landslide

滑源区覆盖面积约4.0×103 m2,滑坡体平均厚度约10 m,由此估算出滑坡源区体积约4.0×104 m3。滑源区基岩为灰岩,产状300°∠20°~30°(图5(a)(b)。源区底部为一滑坡平台,平台之上为滑坡残积体,主要由灰岩碎块组成,其中粒径0.1~0.3 m的块石含量约70%,最大块石粒径约0.5 m(图5(c))。滑坡平台之下有紫红色砂泥岩出露,产状300°∠20°~25°,砂泥岩地层未发生大方量的滑动,仅表层被少量地刮铲(图5(d)),被刮铲的体积约占滑体总体积的5%~10%。

图5 玉树滑坡源区 Fig. 5 Source area of Yushu landslide

由于沟道方向的改变,滑坡体在运动过程中于沟岸位置共发生3次超高(图4(a)),至今在沟岸两侧仍可见泥位及铲刮痕迹(图6(a))。

图6 玉树滑坡流通区 Fig. 6 Transportation zone of Yushu landslide

前人研究表明[59-60],当滑坡体在运动过程中沿着弯曲的沟道爬升时,其局部速度可以用式(1)估算。玉树滑坡的超高参数及相应速度的估算结果见表1,可知滑坡的平均速度大约为24 m/s。

表1 超高数据及速度估算的结果 Tab. 1 Super elevation data and the velocity estimation results

$v = {(r \cdot g \cdot \tan\; \theta \cdot \cos\; \alpha )^{0.5}}$ (1)

式中,r为曲率半径,g为重力加速度(9.81 m/s2), $\theta $ 为沟谷横向坡度, $\alpha $ 为沟谷纵向坡度。

滑坡流通区沿途分布着许多大小不一的圆丘状堆积体,最大的高达7.5 m(图6(b))。沟道因后期地表水流下切侵蚀形成了深约1.5~3.0 m的沟槽,揭露出沟谷堆积体主要由表层的碎块石和下层的砂质黏土组成,其中,表层碎块石来自源区,下层砂质黏土为滑坡发生前堆积于沟谷中的饱和松散堆积体(图7(a),且为饱水状态(图7(b))。现场调查过程中发现多处液化迹象,黑褐色的砂质黏土暴露于地表,近似呈圆形分布,四周高、中心低,碎块石绕其四周呈环形排列,这种迹象临近滑坡前缘依然可见(图8)。

图7 沟谷堆积体 Fig. 7 Deposits in the gully

图8 滑坡前缘的液化迹象(镜像SW) Fig. 8 Liquefaction phenomenon at the toe of the landslide

滑坡高速运动至沟口,因对岸山体阻隔发生减速堆积。前缘堆积体近似呈扇形展布(图9(a)),堆积体后期被一条小溪贯通,暴露出其内部结构(图9(b));从竖直剖面上来看,堆积体呈反序结构,表层主要由粒径0.05~0.50 m的灰岩碎块石组成,其下为砂质黏土夹杂少量灰岩碎块(图9(b))。

图9 玉树滑坡前缘堆积体 Fig. 9 Deposits at the leading edge of the landslide

2.3 玉树滑坡启动及高速远程运动机制

玉树滑坡启动及运动过程如图10所示。滑坡发生前,源区反倾的灰岩在长期风化作用下较为破碎,间歇性地发生崩塌破坏,在源区形成了厚约10 m的崩坡堆积体。在强降雨作用下,崩坡堆积体内孔隙水压力不断升高,滑动面处的土体抗剪强度逐渐降低,最终达到临界状态发生滑动破坏(图10(a))。源区的滑坡体向下运动至沟谷中饱和的砂质黏土之上,突然的冲击加载作用使饱和砂质黏土层发生不排水剪切,引起超孔隙水压力上升,有效应力降低,出现液化现象(图10(b))。液化造成滑坡基底摩擦系数降低,发生高速远程运动,并最终堆积在沟口(图10(c))。由于该滑坡的滑带土为细粒土(粒径<0.075 mm的颗粒超过50%),可忽略颗粒的剪切破碎,上覆滑体的不排水加载作用破坏了土体疏松的结构,使其体积收缩,在滑坡高速运动的条件下孔隙水来不及排出,在土体中不断累积,形成较高的孔隙水压力,使有效应力降低,出现液化现象。

图10 玉树滑坡形成机制示意图 Fig. 10 Schematic diagram of the formation mechanism of Yushu landslide

3 乱石包滑坡 3.1 地质背景

乱石包滑坡位于青藏高原东南缘毛垭坝盆地东北侧四川省理塘县禾尼村(北纬30°11′50″,东经99°55′50″)。毛垭坝盆地外形近似菱形,总体呈北西向展布,东西长20.7 km,南北长12.7 km。研究区内的山体主要由上三叠系的沉积变质岩和三叠系的侵入岩组成。上三叠统地层主要包括砂岩和板岩,三叠系的侵入岩包括黑云母花岗岩( ${\rm{\gamma \beta }}_{\rm{5}}^{{\rm{1 - b}}}$ )、黑云母二长花岗岩( ${\rm{\eta \gamma }}_{\rm{5}}^{{\rm{1 - b}}}$ )、黑云母花岗闪长岩( ${\rm{\gamma \delta }}_{\rm{5}}^{{\rm{1 - b}}}$ )。毛垭坝盆地内部地层由全新世冲积物、上更新世冲–洪积物组成。该区域内地质构造强烈,自西向东主要发育金沙江断裂系(F1)、理塘—德巫断裂系(F2)、鲜水河断裂系(F3)、阿宁河断裂系(F4)、龙门山逆冲带(F5)。其中,理塘—德巫断裂的北西段(F2–1)从乱石包滑坡中部通过(图11),该断层的性质为左旋逆冲断裂,断裂的最新活动造成山前洪积扇水系发生左旋位错,可见乱石包滑坡的形成受理塘—德巫断裂的影响强烈[61-62]

图11 乱石包滑坡地质图(改自Wang等[62] Fig. 11 Location and geological map of Luanshibao landslide(Modified from Wang et al[62]

3.2 滑坡特征

乱石包滑坡垂直高差820 m(4 930~4 110 m),最大水平运动距离3 880 m,等效视摩擦系数0.211<0.330,属于高速远程滑坡。根据Zeng等[63]研究结果,滑坡的10Be暴露年龄为(3510±346)a B.P.,为一全新世滑坡。滑坡源区位于理塘—德巫断层的上盘,岩性为三叠系黑云母花岗闪长岩,在强烈的构造活动与长期风化作用下较为破碎,共发育3组优势节理,产状为:210°~220°∠65°~70°,160°~170°∠60°~70°,225°~230°∠35°~45°。断层下盘主要由第四纪冲洪积物组成。参考滑坡两侧山脊高程,对滑坡滑前地形进行恢复,并借助ARCGIS软件计算出滑坡源区体积为3.2×107 m3。基于详细的现场调查将该滑坡分为斜冲启动区、裹挟流通区和液化堆积区(图12,基于Google Earth影像修改,S1~S4为取样位置),滑坡平面图和剖面图如图13所示。

图12 乱石包滑坡影像图 Fig. 12 Satellite image of Luanshibao landslide

图13 乱石包滑坡平面图和剖面图 Fig. 13 Plan view and profile map of Luanshibao landslide

斜冲启动区即滑坡源区,位于海拔4 275~4 930 m。滑坡后壁粗糙陡峭,坡度约50°,呈圈椅状。源区基岩露头风化强烈,因崩塌形成的破碎岩块堆积于坡脚(图14(a))。源区底部为一低洼平台,长约550 m,宽约230 m,四周高,中心低(图14(b))。平台南东侧发育一个断陷湖,湖面的高程低于平台南西侧斜坡顶面约10 m(图14(c)),坡上出露两条新鲜的地表破裂,走向270°~280°,最大错距达0.8 m(图14(d)),其位置与理塘—德巫断裂一致,推测其可能是滑坡发生之后的一次地震事件造成的,由此可见理塘—德巫断裂自全新世以来活动性较强。

图14 乱石包滑坡源区特征 Fig. 14 Features of the source area of the Luanshibao landslide

滑坡流通区位于海拔4 130~4 275 m,根据滑坡体两侧地层推断该区域在滑坡发生之前为山前冲洪积扇,其物质组成为风化的花岗岩粗砂。源区的滑坡体运动到此处,对其进行强烈的刮铲,并裹挟大量的山前洪积物向下运动。基于滑坡体两侧地形恢复该处滑前的地形,进而估算出滑坡裹挟的物质体积约1.0×107 m3。滑坡运动过程中部分大块石在该区域内沉积下来,形成两条花岗岩块带,其长轴方向平行于滑坡运动方向,与滑坡正剖面方向呈30°夹角(图15)。

图15 裹挟流通区中分布的花岗岩块带(镜像SW) Fig. 15 Granite blocks distribution belts in the entrainment-transportation zone (Orientation: SW)

滑坡堆积区主要分布在G318国道南西向的毛垭坝盆地内,该区域分布着许多大小不一的丘状堆积体,高度为5~30 m(图16(a)),主要由风化的花岗岩粗砂组成,浅表层夹杂着少量的角砾状花岗岩块(图16(b)(c));越靠近前缘,堆积体越小、越低、越圆,花岗岩块含量越低,粒径越小。该区域地下水位较高,多处堆积体底部可见地下水出露(图16(d)),故推测滑坡时该区域中的物质处于饱和状态。根据前人研究结果[50,64],饱和的风化花岗岩砂在高速剪切状态下极易发生颗粒破碎并出现滑动带液化现象。此外,裹挟流通区和液化堆积区底部砂层的粒度分析结果也表明,该滑坡在运动过程中的确产生了显著的颗粒破碎现象(图17,S1~S4的位置见图12),所以推测在高速剪切作用下,滑坡饱和的基底相材料发生了滑动带液化,从而使滑坡发生高速远程运动。

图16 液化堆积区中的滑坡堆积体特征 Fig. 16 Features of the landslide deposits in the liquefaction-accumulation zone

图17 不同区域粒径分布曲线对比图 Fig. 17 Comparison of particle size distribution in different areas

3.3 乱石包滑坡启动及高速远程运动机制

在长期构造作用下,源区的基岩发育了3组优势节理,强烈的风化作用使得节理化的基岩更加破碎,这成为滑坡孕育的内在先决条件。另外,理塘—德巫断裂从滑坡源区底部穿过,据文献记载,该断层全新世以来至少发生过8次震级大于6.0的地震[62],由此可见理塘—德巫断裂全新世以来的构造活动非常强烈。滑坡后缘崩塌区底部发育的低洼平台表明滑坡启动需要有向上的初速度,否则其无法跨越平台南西侧的高地滑出;裹挟流通区内花岗岩块带的分布特征表明滑坡运动需要有南西向的初速度,否则岩带长轴方向不会偏离正剖面方向30°。综合来说,滑坡启动需要有强大的外力将滑坡体向南西同时向上抛出,这一外力条件与理塘—德巫断层逆冲左旋的性质相吻合。故推测乱石包滑坡是由理塘—德巫断裂活动触发,斜抛启动。Guo[61]、Wang[62]、Zeng[63]和Dai[65]等也从数值模拟、古气候变化和断层活动性等角度推测该滑坡极有可能是由古地震触发。

乱石包滑坡的形成机制可以分为以下5个演化阶段(图18):1)斜抛启动阶段,滑坡体在地震作用下拉裂破坏,并被抛掷分离;2)撞击碎裂阶段,被抛掷的滑坡体下落后与地面发生强烈的碰撞,岩体发生强烈的碎裂化;3)刮铲裹挟阶段,碎裂化的岩体沿坡向下运动,并对山前的冲洪积扇物源进行强烈的刮铲,将其裹挟至滑坡体底部一同向下运动;4)剪切液化阶段,滑坡体运动至相对平坦的山前盆地,该区地下水位较高,区内的冲洪积相物源呈饱和状态,滑坡高速剪切造成基底大量的土颗粒破碎,引起滑动带液化,降低基底摩擦系数;5)堆积就位阶段,滑坡体由于能量耗散逐渐停止运动,最终堆积于无量河前缘。乱石包滑坡的高速远程运动机制是:基底饱和的砂土颗粒在剪切作用下发生破碎,使土体体积收缩,而滑坡高速运动造成孔隙水来不及排出,在土体中不断累积,形成了较高的孔隙水压力,使有效应力降低,基底摩擦系数减小。

图18 乱石包滑坡形成机制示意图 Fig. 18 Schematic diagram of the formation mechanism of Luanshibao landslide

4 结 论

本文对青藏高原液化型高速远程滑坡形成机制的初步分析表明,滑坡超强运动主要归因于不排水加载作用下土体结构破坏和土颗粒破碎引起的两种液化机理。玉树滑坡和乱石包滑坡二者在启动条件、运动及堆积地貌单元及液化机制等方面均有差异。玉树滑坡为强降雨诱发的崩坡积层滑坡,运动及堆积发生在有约束的沟道地貌单元中,滑带土为细粒土,可忽略颗粒的剪切破碎性,不排水加载作用破坏了滑带土松散的结构使其体积收缩,超孔隙水压力上升,有效应力降低,发生液化。乱石包滑坡为地震触发斜抛启动的岩质滑坡,发生在山前盆地,堆积区地势开阔。滑带土为风化的花岗岩粗砂,具有剪切易破碎的特性,土颗粒破碎引起的滑动带液化机制是其高速远程运动的主要原因。

参考文献
[1]
Cheng Qiangong,Zhang Zhuoyuan,Huang Runqiu. Study on dynamics of rock avalanches:State of the art report[J]. Journal of Mountain Science, 2007, 25(1): 72-84. [程谦恭,张倬元,黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 2007, 25(1): 72-84. DOI:10.3969/j.issn.1008-2786.2007.01.007]
[2]
International Union of Geological Sciences Working Group on Landslide. A suggested method for describing the rate of movement of a landslide[J]. Bulletin of the International Association of Engineering Geology, 1995, 52: 75-78. DOI:10.1007/BF02602683
[3]
Zhang Ming,Yin Yueping,Wu Shuren,et al. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 2010, 18(6): 805-817. [张明,殷跃平,吴树仁,等. 高速远程滑坡-碎屑流运动机理研究发展现状与展望[J]. 工程地质学报, 2010, 18(6): 805-817. DOI:10.3969/j.issn.1004-9665.2010.06.001]
[4]
Heim A. Der Bergsturz von Elm Deutsch[J]. Geol Zeitschr, 1882, 34: 74-115.
[5]
McConnell R G,Brock R W.Report on the great landslide at Frank,Alberta[R].Ottawa:Department of the Interior,1903.
[6]
Plafker G,Ericksen G E,Concha J F. Geological aspects of the May 31,1970,Perú earthquake[J]. Bull Seismol Soc Am, 1970, 61: 543-578.
[7]
殷跃平,潘桂棠,刘宇平,等.汶川地震地质与滑坡灾害概论[M].北京:地质出版社,2009.
[8]
Okura Y,Kitahara H,Sammori T. Fluidization in dry landslides[J]. Engineering Geology, 2000, 56(3): 347-360. DOI:10.1016/S0013-7952(99)00118-0
[9]
Manzella I,Labiouse V. Qualitative analysis of rock avalanches propagation by means of physical modelling of non-constrained gravel flows[J]. Rock Mechanics & Rock Engineering, 2008, 41(1): 133-151. DOI:10.1007/s00603-007-0134-y
[10]
Ugai K,Yang Q,Xu Q,et al.Laboratory flume static and dynamic experiment for rock avalanches[C]//Soil Dynamics and Earthquake Engineering.Virginia:ASCE,2010,201:278–287.
[11]
Hao Minghui,Xu Qiang,Yang Lei,et al. Physical modeling and movement mechanism of landslide-debris avalanches[J]. Rock and Soil Mechanics, 2014, 35(Supp1): 127-132. [郝明辉,许强,杨磊,等. 滑坡–碎屑流物理模型试验及运动机制探讨[J]. 岩土力学, 2014, 35(增刊1): 127-132.]
[12]
Hao Minghui,Xu Qiang,Yang Xingguo,et al. Physical modeling tests on inverse grading of particles in high speed landslide debris[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 472-479. [郝明辉,许强,杨兴国,等. 高速滑坡–碎屑流颗粒反序试验及其成因机制探讨[J]. 岩石力学与工程学报, 2015, 34(3): 472-479. DOI:10.13722/j.cnki.jrme.2015.03.004]
[13]
Iverson,Richard M. Granular avalanches across irregular three-dimensional terrain:2.Experimental tests[J]. Journal of Geophysical Research, 2004, 109(F1): F01015. DOI:10.1029/2003JF000084
[14]
Wang Y F,Xu Q,Cheng Q G,et al. Spreading and deposit characteristics of a rapid dry granular avalanche across 3D topography:Experimental study[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4349-4370. DOI:10.1007/s00603-016-1052-7
[15]
Shea T,van Wyk de Vries B. Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches[J]. Geosphere, 2008, 4(4): 657-686. DOI:10.1130/GES00131.1
[16]
Dufresne A,Davies T R H. Longitudinal ridges in mass movement deposits[J]. Geomorphology, 2009, 105(3/4): 171-181. DOI:10.1016/j.geomorph.2008.09.009
[17]
Paguican E M R,van Wyk de Vries B,Lagmay A F M. Hummocks:How they form and how they evolve in rockslide-debris avalanches[J]. Landslides, 2014, 11(1): 67-80. DOI:10.1007/s10346-012-0368-y
[18]
Longchamp C,Abellan A,Jaboyedoff M,et al. 3-D models and structural analysis of rock avalanches:The study of the deformation process to better understand the propagation mechanism[J]. Earth Surface Dynamics, 2016, 4(3): 743-755. DOI:10.5194/esurf-4-743-2016
[19]
Liu K F,Li H C,Hsu Y C. Debris flow hazard assessment with numerical simulation[J]. Natual Hazards, 2009, 49: 137-161. DOI:10.1007/s11069-008-9285-8
[20]
Sassa K,Nagai O,Solidum R,et al. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides, 2010, 7: 219-236. DOI:10.1007/s10346-010-0230-z
[21]
Ouyang C,He S,Xu Q,et al. A MacCormack–TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain[J]. Computer and Geoscience, 2013, 52: 1-10. DOI:10.1016/j.cageo.2012.08.024
[22]
Peng Hong,Zhao Yanxin,Cui Peng,et al. Two-dimensional numerical model for debris flows in the Jiangjia gully,Yunnan province[J]. Journal of Mountain Science, 2011, 8(6): 757-766. DOI:10.1007/s11629-011-2043-5
[23]
McDougall S,Hungr O. A model for the analysis of rapid landslide motion across three dimensional terrain[J]. Canadian Geotechnical Journal, 2004, 41: 1084-1097. DOI:10.1139/t04-052
[24]
Pastor M,Haddad B,Sorbino G,et al. A depth-integrated,coupled SPH model for flow-like landslides and related phenomena[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33: 143-172. DOI:10.1002/nag.705
[25]
Cundall P A. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. DOI:10.1680/geot.1980.30.3.331
[26]
Shi Genhua. Discontinuous deformation analysis:A new numerical model for the statics and dynamics of deformable block structures[J]. Engineering Computations, 1992, 9(2): 157-168. DOI:10.1108/eb023855
[27]
Mikola R G.3D simulation of tsunami wave induced by rock slope failure using coupled DDA–SPH[C]//Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium.New York:Curran Associates,2014:1712-1720
[28]
Canelas R B,Crespo A J C,Domínguez J M,et al.Modeling of complex solid-fluid flows with meshless particulate methods[C].Conferência Nacional de Mecânica dos Fluidos,Termodinâmica e Energia (MEFTE2014).Porto,2014.
[29]
Kent P. The Transport mechanism in catastrophic rockfalls[J]. Geology, 1966, 74: 79-83. DOI:10.2307/30075179
[30]
Sassa K.Special lecture:Geotechnical model for the motion of landslides[C]//Proceedings of the 5th International Symposium on Landslide,Rotterdam:Balkema A A,1988:37–55.
[31]
Davies T,McSaveney M. Runout of dry granular avalanches[J]. Canadian Geotechnical Journal, 1999, 36: 313-320. DOI:10.1139/cgj-36-2-313
[32]
Eisbacher G. Cliff collapse and rock avalanche (sturzstrom) in the Mackenzie Mountains,northwestern Canada[J]. Canadian Journal of Earth Science, 1979, 16: 309-344. DOI:10.1139/t79-032
[33]
Melosh H. Acoustic fluidization:A new geologic process?[J]. Journal of Geophysical Research Solid Earth, 1979, 84(B13): 7513-7520. DOI:10.1029/JB084iB13p07513
[34]
Fukuoka H,Wang Gonghui,Sassa K,et al. Earthquake-induced rapid long-traveling flow phenomenon:May 2003 Tsukidate landslide in Japan[J]. Landslides, 2004, 1(2): 151-155. DOI:10.1007/s10346-004-0019-z
[35]
Okada Y,Sassa K,Fukuoka H. Undrained shear behaviour of sands subjected to large shear displacement and estimation of excess pore-pressure generation from drained ring shear tests[J]. Canadian Geotechnical Journal, 2005, 42: 787-803. DOI:10.1139/t05-017
[36]
Sun Ping,Yin Yueping,Wu Shuren,et al. An experimental study on the initiation mechanism of rapid and long run-out loess landslide caused by 1920 Haiyuan earthquake[J]. Journal of Engineering Geology, 2009, 17(4): 449-454. [孙萍,殷跃平,吴树仁,等. 高速远程地震黄土滑坡发生机制试验研究[J]. 工程地质学报, 2009, 17(4): 449-454. DOI:10.3969/j.issn.1004-9665.2009.04.003]
[37]
Xing Aiguo,Wang Gonghui,Li Bin,et al. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling,Guizhou,China[J]. Canadian Geotechnical Journal, 2015, 52(7): 971-981. DOI:10.1139/cgj-2014-0122
[38]
Hu Mingjian,Pan Huali,Zhu Changqi,et al. High-speed ring shear tests to study the motion and acceleration processes of the Yingong landslide[J]. Journal of Mountain Science, 2015, 12(6): 1534-1541. DOI:10.1007/s11629-014-3059-4
[39]
Cui Shenghua,Wang Gonghui,Pei Xiangjun,et al. On the initiation and movement mechanisms of a catastrophic landslide triggered by the 2008 Wenchuan(Ms8.0) earthquake in the epicenter area[J]. Landslides, 2016, 14: 1-15. DOI:10.1007/s10346-016-0754-y
[40]
Sassa K,Fukuoka H,Scarascia–Mugnozza G,et al. Earthquake-induced landslides:Distribution,motion and mechanisms[J]. Soils and Foundations, 2014, 54(4): 544-559. DOI:10.1016/j.sandf.2014.06.001
[41]
Sassa K,Fukuoka H,Wang Gonghui,et al. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides, 2004, 1: 7-19. DOI:10.1007/s10346-003-0004-y
[42]
Sassa K,Dang I,He B,et al. A new high-stress undrained ring-shear apparatus and its application to the 1792 Unzen-Mayuyama megaslide in Japan[J]. Landslides, 2014, 11: 827-842. DOI:10.1007/s10346-014-0501-1
[43]
Zhang Junfeng. Testing study on permeability intensification and structural changes in saturated sands under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(6): 720. [张均锋. 冲击载荷下饱和砂土渗流强化与结构破坏的实验研究[J]. 岩石力学与工程学报, 1999, 18(6): 720. DOI:10.3321/j.issn:1000-6915.1999.06.024]
[44]
Meng Xiangyue,Zhang Junfeng,Yu Shanbing,et al. The variation of pore water pressure and its relationship with liquefaction and densification in saturated sand under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 21(3): 7-11. [孟祥跃,张均锋,俞善炳,等. 冲击载荷下饱和砂土中孔隙水压力的变化及其与液化密实的关系[J]. 岩土工程学报, 1999, 21(3): 7-11. DOI:10.1088/0256-307X/16/9/020]
[45]
Meng Xiangyue,Zhang Junfeng,Tan Qingming,et al. X-ray observation on flow and failure of saturated sand under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 803-807. [孟祥跃,张均锋,谈庆明,等. 冲击载荷下饱和砂土中流动和破坏的X光观测[J]. 岩石力学与工程学报, 2002, 21(6): 803-807. DOI:10.3321/j.issn:1000-6915.2002.06.009]
[46]
Fu Junjian.Experimental study on the shape of saturated soil under impact[D].Ganzhou:Jiangxi University of Science and Technology,2011.
傅军健.冲击作用下饱和土性状的室内试验研究[D].赣州:江西理工大学,2011.
[47]
Duan Zhao,Dong Chenxi,Zheng Wenjie,et al.Liquefactionmechanism of terrace sandy silt under landslide impact[J/OL].Journal of Engineering Geology,2020[2020–03–01].[段钊,董晨曦,郑文杰,等.滑坡冲击作用下的阶地砂质粉土层液化机理[J/OL].工程地质学报,2020[2020–03–01].]
[48]
Husson L,Bernet M,Guillot S,et al. Dynamic ups and downs of the Himalaya[J]. Geology, 2014, 42: 839-842. DOI:10.1130/G36049.1
[49]
Naik A,Biswas A.Study on liquefaction of soil[D].Rourkela:National Institute of Technology,2010.
[50]
Okada Y,Sassa K,Fukuoka H. Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests[J]. Engineering Geology, 2004, 75: 325-343. DOI:10.1016/j.enggeo.2004.07.001
[51]
Wang Fawu.An experimental study on grain crushing and excess pore pressure generation during shearing of sandy soils:A key factor for rapid landslide motion[D].Kyoto:Kyoto University,1999.
[52]
Igwe O,Sassa K,Wang Fawu. The influence of grading on the shear strength of loose sands in stress-controlled ring shear tests[J]. Landslides, 2007, 4: 43-51. DOI:10.1007/s10346-006-0051-2
[53]
Wang Gonghui,Sassa K. Post-failure mobility of saturated sands in undrained load-controlled ring shear tests[J]. Canadian Geotechnical Journal, 2002, 39: 821-837. DOI:10.1139/t02-032
[54]
Seed H. Landslides during earthquakes due to soil liquefaction[J]. Journal of Geotechnical Engineering Division, 1968, 94(SM5): 1055-1122.
[55]
Hutchinson J,Bhandari R. Undrained loading,a fundamental mechanism of mudslide and other mass movements[J]. Geotechnique, 1971, 21(4): 353-358. DOI:10.1680/geot.1971.21.4.353
[56]
Sassa K,Fukuoka H,Wang Fawu.Mechanism and risk assessment of landslide-triggered-debris flows:Lessons from the 1996.12.6 Otari debris flow disaster,Nagano,Japan[M]//Cruden Landslide Risk Assessment.Rotterdam:Balkema A A,1997:347–356.
[57]
Wang Fawu. Liquefactions caused by structure collapse and grain crushing of soils in rapid and long runout landslides triggered by earthquakes[J]. Journal of Engineering Geology, 2019, 27(1): 98-107. [汪发武. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理[J]. 工程地质学报, 2019, 27(1): 98-107. DOI:10.13544/j.cnki.jeg.2019-034]
[58]
Jiang Yao.Study on Yushu earthquake landslides of Qinhai province,China[D].Beijing:China University of Geosciences,2014.
蒋瑶.青海省玉树地区地震滑坡研究[D].北京:中国地质大学,2014.
[59]
Boultbee N,Stead D,Schwab J,et al. The Zymoetz River rock avalanche,June 2002,British Columbia,Canada[J]. Engineering Geology, 2006, 83: 76-93. DOI:10.1016/j.enggeo.2005.06.038
[60]
Hungr O,Morgenstern G C,Kellerhals R. Quantitative analysis of debris torrent hazards for design of remedial measures[J]. Canadian Geotechnical Journal, 1984, 21: 663-677. DOI:10.1139/t84-073
[61]
Guo Changbao,Zhang Yongshuang,Montgomery D,et al. How unusual is the long-runout of the earthquake-triggered giant Luanshibao landslide,Tibetan Plateau,China?[J]. Geomorphology, 2016, 259: 145-154. DOI:10.1016/j.geomorph.2016.02.013
[62]
Wang Yufeng,Cheng Qiangong,Lin Qiwen,et al. Insights into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan Plateau,China) based on its complex surface landforms[J]. Geomorphology, 2018, 317: 170-183. DOI:10.1016/j.geomorph.2018.05.025
[63]
Zeng Qingli,Zhang Luqing,Davies T,et al. Morphology and inner structure of Luanshibao rock avalanche in Litang,China and its implications for long-runout mechanisms[J]. Engineering Geology, 2019, 260: 105216. DOI:10.1016/j.enggeo.2019.105216
[64]
Okada Y,Sassa K,Fukuoka H. Liquefaction and the steady state of weathered granitic sands obtained by undrained ring shear tests:A fundamental study of the mechanism of liquidized landslides[J]. Journal of Natural Disaster Science, 2000, 22(2): 75-85. DOI:10.2328/jnds.22.75
[65]
Dai Zili,Wang Fawu,Cheng Qiangong,et al. A giant historical landslide on the eastern margin of the Tibetan Plateau[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 2055-2068. DOI:10.1007/s10064-017-1226-x