传统刚性并联机构具有刚度大、精度高、承载能力强等优点,在工业领域得到广泛研究和应用。但由于这类机构采用全刚性构件,也存在质量重、惯性力大、柔顺性差等缺点,在某些特殊场合难以使用。受张拉整体结构构型方法的启发,近年来出现了一种由受压的刚性构件(伸缩杆)和受拉的柔性构件(弹簧或绳索)混合构成的新型机构,即张拉整体机构。这类机构中由于弹簧或绳索的使用,质量及惯性力得到显著降低;内部所有构件均承受纯轴向力,提高了系统强度,且便于精确建模;另外,这种机构柔顺性好、可折叠,在航空航天领域具有广泛的应用前景[1–3]。
目前,关于张拉整体机构研究不多,且多集中在平面机构,如:Bayat等[4]介绍的2弹簧平面张拉整体机构;Arsenault等[5]提出的由2根刚性杆和4根绳索组成的平面张拉整体机构;Shai等[6]提出的基于基本单元Assur组的平面张拉整体机构的设计方法;Ji等[7–8]提出的两种2–class平面张拉整体机构。对于空间张拉整体并联机构,最简单的结构形式来源于两端面平行的棱柱形结构,这种结构和并联机构十分相似,因此张拉整体并联机构由此而得。目前主要的空间机构形式是由3杆9索张拉结构演化而来的3–3型(T–3)张拉整体并联机构,Marshall[9]、Arsenault[10–11]、Abadi[12–13]、Mehdi[14]等对此类型机构做了研究。国内纪志飞等[15]提出一种4–4型张拉整体并联机构,用于海洋波浪能的采集,分析了系统动力学及能量收集效率。
根据4杆12索张拉整体结构构型,作者设计一种由上平台、下平台、4根弹性支链和4根刚性驱动支链构成的4–SPS型空间张拉整体并联机构。该机构为6自由度(DOF)运动输出,但只有4个驱动支链,因此为欠驱动机构。由于弹性支链的存在,根据张拉整体结构定义,保持平衡的条件为机构势能最小。结合最小势能法,分析了机构的运动学正逆解、静态平衡方程,并推导了速度加速度方程,最后通过变步长法搜索机构的运动学正反解数值解,并给出平衡条件下机构的速度加速度运动曲线。
1 机构设计及位置分析4–SPS张拉整体机构的初始平衡位置与4棱柱型张拉整体结构十分相似,如图1所示。图1(a)为4棱柱张拉整体结构,由12根受拉弹性绳索
![]() |
图1 机构原理图 Fig. 1 Schematic diagram of mechanism |
$\alpha = \frac{{\text{π}} }{2} + \frac{{\text{π}} }{\varepsilon }$ | (1) |
式中,
由于上下平台中的张拉绳索应始终保持紧绷,且形状不变,故采用刚性板替代;4根弹性绳索用刚度为k的弹簧替代,4根刚性杆用伸缩杆(P副)替代;上下平台各个节点
设上、下平台均为正方形,边长分别为
设动平台P点位置矢量为
${{C}} = \left[ {\begin{array}{*{20}{c}} {{\rm{cos}}\;\;\psi \;\;{\rm{cos}}\;\;\theta\;\;}&{{\rm{cos}}\;\;\psi\;\;{\rm{sin}}\;\;\theta\;\; {\rm{sin}}\;\;\phi - {\rm{sin}}\;\;\psi \;\;{\rm{cos}}\;\;\phi \;\;}&{{\rm{sin}}\;\;\psi\;\; {\rm{sin}}\;\;\phi + {\rm{cos}}\;\;\psi\;\; {\rm{sin}}\;\;\theta\;\; {\rm{cos}}\;\;\phi \;\;} \\ {{\rm{sin}}\;\;\psi \;\;{\rm{cos}}\;\;\theta \;\;}&{{\rm{cos}}\;\;\psi \;\;{\rm{cos}}\;\;\phi + {\rm{sin}}\;\;\psi\;\; {\rm{sin}}\;\;\theta \;\;{\rm{sin}}\;\;\phi \;\;}&{{\rm{sin}}\;\;\psi \;\;{\rm{sin}}\;\;\theta \;\;{\rm{cos}}\;\;\phi - {\rm{cos}}\;\;\psi \;\;{\rm{sin}}\;\;\phi } \\ { - {\rm{sin}}\;\;\theta \;\;}&{{\rm{cos}}\;\;\theta\;\; {\rm{sin}}\;\;\phi \;\;}&{{\rm{cos}}\;\;\theta\;\;{\rm{cos}}\;\;\phi } \end{array}} \right]$ | (2) |
下定平台各节点
$\begin{aligned}[b] &{{{r}}_{{b_1}}} = {\left[ {\frac{{\sqrt 2 }}{2}b,0,0} \right]^{\rm{T}}},\;\;\;\;{{{r}}_{{b_2}}} = {\left[ {0,\frac{{\sqrt 2 }}{2}b,0} \right]^{\rm{T}}},\\ &{{{r}}_{{b_3}}} = {\left[ { - \frac{{\sqrt 2 }}{2}b,0,0} \right]^{\rm{T}}},\;\;\;\;{{{r}}_{{b_4}}} = {\left[ {0, - \frac{{\sqrt 2 }}{2}b,0} \right]^{\rm{T}}} \end{aligned}$ | (3) |
动平台各节点
$\begin{aligned}[b] &{{{u}}_{{p_1}}} = {\left[ { - \frac{a}{2},\frac{a}{2},{\rm{0}}} \right]^{\rm{T}}},\;\;\;\;{{{u}}_{{p_2}}} = {\left[ { - \frac{a}{2}, - \frac{a}{2},0} \right]^{\rm{T}}},\\ &{{{u}}_{{p_3}}} = {\left[ {\frac{a}{2}, - \frac{a}{2},0} \right]^{\rm{T}}},\;\;\;\;{{{u}}_{{p_4}}} = {\left[ {\frac{a}{2},\frac{a}{2},0} \right]^{\rm{T}}} \end{aligned}$ | (4) |
节点
$ {{{r}}\!_{{p_i}}} = {{{r}}\!_P} + {{C}}{{{u}}_{{p_i}}},\;\;i=1,2,3,4 $ | (5) |
从节点
${{{L}}_{{p_i}}} = {{{L}}_{p_{i}}}{{{s}}_{p_{i}}} = {{{r}}_P} + {{C}}{{{u}}_{{p_i}}} - {{{r}}_{{b_i}}}$ | (6) |
式中,
同样地,从节点
${{{L}}_{s_{i}}} = {{{L}}_{s_{i}}}{{{s}}_{s_{i}}} = {{{r}}_P} + {{C}}{{{u}}_{{p_i}}} - {{{r}}_{{b_{i + 1}}}}$ | (7) |
式中,
由式(2)~(7)可得驱动支链和弹性支链的单位向量表达式分别为:
${{{s}}_{p_{i}}} = \frac{{{{{r}}_P} + {{C}}{{{u}}_{{p_i}}} - {{{r}}_{{b_i}}}}}{{{L_{p_{i}}}}}$ | (8) |
${{{s}}_{{s_i}}} = \frac{{{{{r}}_P} + {{C}}{{{u}}_{{p_i}}} - {{{r}}_{{b_{i + 1}}}}}}{{{L_{{s_i}}}}}$ | (9) |
若刚性伸缩支链由活塞杆和缸体两部分组成,质量分别为
![]() |
图2 刚性支链坐标图 Fig. 2 Rigid chain coordinate diagram |
${{r}}_{{c_2}}^i = {{{r}}_{{b_i}}} + {l_2}{{{s}}_{{p_i}}}$ | (10) |
${{r}}_{{c_1}}^i = {{{r}}_{{b_i}}} + \left( {{L_{{p_i}}} - {l_1}} \right){{{s}}_{{p_i}}}$ | (11) |
张拉整体机构的各关节变量不仅取决于机构的位置和姿态,同时需要保持内部各构件内应力平衡,因此在机构位置分析时需同时考虑运动学和静态平衡问题。对于欠驱动4–SPS张拉整体并联机构,仅有4个主动驱动支链,通常情况下机构的输出是不确定的,但由于机构中含有弹性元件,在机构处于平衡状态时,弹性势能总是最小的,由此可确定机构的输出。
假设机构动平台质量为M,刚性支链的质量为
$ Mg{{\textit{\$}}\!_p} \! +\! \sum\limits_{i = 1}^4 {({m_1}g{\textit{\$}}\!_{{c_1}}^i \!+ \!{m_2}g{\textit{\$}}\!_{{c_2}}^i)} \! +\! \sum\limits_{i = 1}^4 k {\delta _i}{{\textit{\$}}\!_{{s_i}}} \!+ \!\sum\limits_{i = 1}^4 {{f_i}{{\textit{\$}}\!_{{p_i}}}} \!=\! 0 \!\!\!\! \!\!\!\! $ | (12) |
式中:
张拉整体机构的静态平衡可通过最小化势能法获得。本机构的势能主要包含4根弹簧支链的弹性势能以及动平台与刚性支链的重力势能两部分。
弹性势能可表达为:
${U_{\rm s}} = \frac{1}{2}\sum\limits_{i = 1}^4 {{k_i}\delta _i^2} $ | (13) |
机构的重力势能是动平台重力势能和4条刚性支链重力势能之和,可表示为:
${U_{\rm m}} = Mg{{{r}}_P} \cdot {{e}} + \sum\limits_{i = 1}^4 {{m_{{c_1}}}g{{r}}_{{c_1}}^i \cdot {{e}}} + \sum\limits_{i = 1}^4 {{m_{{c_2}}}g{{r}}_{{c_2}}^i \cdot {{e}}} $ | (14) |
机构总势能为:
$U = {U_{\rm s}} + {U_{\rm m}}$ | (15) |
若假设机构动平台的6维广义坐标矢量为
$\frac{{\partial U}}{{\partial {{\chi}}}} = 0$ | (16) |
位置逆解是指在已知动平台的位置和姿态的情况下,求得4条驱动伸缩杆支链的输入长度
$\frac{{\partial U}}{{\partial {{\varTheta}}}} = 0$ | (17) |
根据式(17)可求得对应的姿态欧拉角的数值解。由式(6)、(7)可得第
${L_{{p_i}}} = \sqrt {{{{L}}^{\rm{T}}_{{p_i}}}{{{L}}_{{p_i}}}} $ | (18) |
${L_{{s_i}}} = \sqrt {{{{L}}^{\rm{T}}_{{s_i}}}{{{L}}_{{s_i}}}} $ | (19) |
将式(17)得到的姿态角数值解代入式(18)、(19),可求得机构的运动位置逆解的解析解,其中驱动支链长度公式为:
${ \left\{\!\!\!\! \begin{array}{l} {L_{{p_1}}} \!\!\!=\!\!\! \left[ \left( \dfrac{b}{2}\left( {\cos\;\phi \sin\;\psi \!-\!\cos\;\psi \sin\;\theta \sin\;\phi \! +\! \cos\;\psi \cos\;\theta } \right)\! -\! \right.\right.\\ \!\! \!\! \left.\left.x \!+\! \dfrac{{\sqrt 2 }}{2}a\! \right)^2 \!+ \! \left( y\! +\! \dfrac{b}{2}(\cos\;\psi \cos\;\phi \! +\! \sin\;\psi \sin\;\theta \sin\;\phi -\right.\right.\\ \left.\left. \!\cos\;\theta \sin\;\psi ) \right)^2 \!+{\left( {{\textit{z}} \!+\! \dfrac{b}{2}\sin\;\theta + \dfrac{b}{2}\cos\;\theta {\sin\;}\phi } \right)^2}\right]^{\tfrac12} ,\\ {L_{{p_2}}}\!\!\! =\!\!\! \left[ \left( x\! +\! \dfrac{b}{2}\left( \cos\;\phi \sin\;\psi \!-\!\cos\;\psi \sin\;\theta \sin\;\phi \!-\!\right.\right.\right.\\ \!\! \left.\left.\left.\cos\;\psi \cos\;\theta \right) \right)^2\! +\left( \!\!\dfrac{b}{2}(\cos\;\psi \cos\;\phi \! +\! \sin\;\psi \sin\;\theta \sin\;\phi \!+ \!\!\right.\right. \\ \left.\left. \cos\;\theta \sin\;\psi ) \!+\!\dfrac{{\sqrt 2 }}{2}a \!\!-\!\! y \!\right)^2\!+{\left( {{\textit{z}} + \dfrac{b}{2}\left( {\sin\;\theta - \cos\;\theta \sin\;\phi } \right)} \right)^2}\right]^{\tfrac 12},\\ {L_{p_3}} \!\!\!= \!\!\left[\! \left( x \!\!+\!\! \dfrac{b}{2}\left( {\cos\;\phi \sin\;\psi \!-\!\cos\;\psi \sin\;\theta \sin\;\phi \! +\! \cos\;\psi \cos\;\theta } \right)\! +\!\right.\right.\\ \!\! \!\!\left.\left. \dfrac{{\sqrt 2 }}{2}a \right)^2 \!+\! \left( y \!-\! \dfrac{b}{2}(\cos\;\psi \cos\;\phi \!+\! \sin\;\psi \sin\;\theta \sin\;\phi \!+\! \right.\right.\\ \left.\left.\cos\;\theta \sin\;\psi ) \right)^2\! +{\left( {\dfrac{b}{2}\left( {\sin\;\theta + \cos\;\theta \sin\;\phi } \right) - {\textit{z}}} \right)^2}\right]^{\tfrac 12},\\ {L_{{p_4}}} \!\!=\!\! \left[ \left( x \!-\! \dfrac{b}{2}\left( \cos\;\phi \sin\;\psi \!-\!\cos\;\psi \sin\;\theta \sin\;\phi \!-\!\right.\right.\right.\\ \left.\left.\left.\cos\;\psi \cos\;\theta \right) \right)^2 \!+\left( y \!+\! \dfrac{b}{2}(\cos\;\psi \cos\;\phi \! +\! \sin\;\psi \sin\;\theta \sin\;\phi \!+\! \right.\right.\\ \left.\left. \cos\;\theta \sin\;\psi ) \!+\! \dfrac{{\sqrt 2 }}{2}a \right)^2+ {\left( {{\textit{z}} + \dfrac{b}{2}\left( {\cos\;\theta \sin\;\phi {{ - \sin\;}}\theta } \right)} \right)^2}\right]^{\tfrac 12} \end{array} \right.}$ | (20) |
当4个驱动支链长度
由式(18)构造辅助函数:
${\xi _i}= {{ L}^2_{{p_i}}} - {{{L}}^{\rm{T}}_{{p_i}}} {{{L}}_{{p_i}}}$ | (21) |
由于系统输入
$V = U + \sum\limits_{i = 1}^4 {{\lambda _i}{\xi _i}} $ | (22) |
机构静态平衡必须满足:
$\frac{{\partial V}}{{\partial {{\rho}}}} = 0$ | (23) |
式中,
由式(21)~(23)可得10个偏导方程,先根据其中4个方程求解出
$\left[ \!\!\!{\begin{array}{*{20}{c}} {{\lambda _1}} \\ {{\lambda _2}} \\ {{\lambda _3}} \\ {{\lambda _4}} \end{array}} \!\!\!\right] = - {\left[ \!\!\!{\begin{array}{*{20}{c}} {\displaystyle\frac{{\partial {\xi _1}}}{{\partial x}}}&{\displaystyle\frac{{\partial {\xi _2}}}{{\partial x}}}&{\displaystyle\frac{{\partial {\xi _3}}}{{\partial x}}}&{\displaystyle\frac{{\partial {\xi _4}}}{{\partial x}}} \\ {\displaystyle\frac{{\partial {\xi _1}}}{{\partial y}}}&{\displaystyle\frac{{\partial {\xi _2}}}{{\partial y}}}&{\displaystyle\frac{{\partial {\xi _3}}}{{\partial y}}}&{\displaystyle\frac{{\partial {\xi _4}}}{{\partial y}}} \\ {\displaystyle\frac{{\partial {\xi _1}}}{{\partial {\textit{z}}}}}&{\displaystyle\frac{{\partial {\xi _2}}}{{\partial {\textit{z}}}}}&{\displaystyle\frac{{\partial {\xi _3}}}{{\partial {\textit{z}}}}}&{\displaystyle\frac{{\partial {\xi _4}}}{{\partial {\textit{z}}}}} \\ {\displaystyle\frac{{\partial {\xi _1}}}{{\partial \psi }}}&{\displaystyle\frac{{\partial {\xi _2}}}{{\partial \psi }}}&{\displaystyle\frac{{\partial {\xi _3}}}{{\partial \psi }}}&{\displaystyle\frac{{\partial {\xi _4}}}{{\partial \psi }}} \end{array}}\!\!\! \right]^{ - 1}}\left[\!\!\! {\begin{array}{*{20}{c}} {\displaystyle\frac{{\partial U}}{{\partial x}}} \\ {\displaystyle\frac{{\partial U}}{{\partial y}}} \\ {\displaystyle\frac{{\partial U}}{{\partial {\textit{z}}}}} \\ {\displaystyle\frac{{\partial U}}{{\partial \psi }}} \end{array}} \!\!\!\right]$ | (24) |
将式(24)中求得的
根据上述矢量变换矩阵式(2),动平台角速度矢量
$ \left\{ \begin{aligned} & {\omega _x} = {c_{13}}{{\dot c}_{12}} + {c_{23}}{{\dot c}_{22}} + {c_{33}}{{\dot c}_{32}} , \\ & {\omega _y} = {c_{11}}{{\dot c}_{13}} + {c_{21}}{{\dot c}_{23}} + {c_{31}}{{\dot c}_{33}}, \\ & {\omega _x} = {c_{12}}{{\dot c}_{11}} + {c_{22}}{{\dot c}_{21}} + {c_{32}}{{\dot c}_{31}} \\ \end{aligned} \right. $ | (25) |
式中,
将式(2)代入式(25),可得:
$\left\{ \begin{aligned} & {\omega _x} = - \dot \psi \sin\;\theta + \dot \phi , \\ & {\omega _y} = \dot \psi \cos\;\theta \sin\;\phi + \dot \theta \cos\;\phi , \\ & {\omega _{\textit{z}}} = \dot \psi \cos\;\theta \cos\;\phi - \dot \theta \sin\;\phi \\ \end{aligned} \right.$ | (26) |
整理成矩阵形式为:
${{\omega}} = {{{K}}_1}{\dot{{\varTheta }}}$ | (27) |
式中,
将式(27)两边求导,得到动平台的角加速度矢量
${\dot{{\omega}}} = {{{K}}_1}{\ddot{{\varTheta}}} + {{{K}}_2}{\dot{{\varTheta }}}$ | (28) |
式中,
$\begin{aligned}[b] {{{K}}_2} = \left[\!\!\! {\begin{array}{*{20}{c}} { - \displaystyle\frac{1}{2}\dot \theta \cos\;\theta }&\!\!\!{ - \displaystyle\frac{1}{2}\dot \psi \cos\;\theta }&\!\!\!0 \\ { - \displaystyle\frac{1}{2}\dot \theta \sin\;\theta \sin\;\phi + \frac{1}{2}\dot \phi \cos\;\theta \cos\;\phi }&\!\!\!{ - \displaystyle\frac{1}{2}\dot \phi \sin\;\theta \sin\;\phi - \frac{1}{2}\dot \phi \sin\;\phi } &\!\!\!{\displaystyle\frac{1}{2}\dot \psi \cos\;\theta \cos\;\phi - \frac{1}{2}\dot \theta \sin\;\phi } \\ { - \displaystyle\frac{1}{2}\dot \theta \sin\;\theta \cos\;\phi + \frac{1}{2}\dot \phi \cos\;\theta \sin\;\phi }&\!\!\!{ - \displaystyle\frac{1}{2}\dot \phi \sin\;\theta \cos\;\phi - \frac{1}{2}\dot \phi \cos\;\phi }&\!\!\!{\displaystyle\frac{1}{2}\dot \psi \cos\;\theta \sin\;\phi - \frac{1}{2}\dot \theta \cos\;\phi } \end{array}} \!\!\!\right] {\text{。}} \end{aligned}$ |
对式(5)求导,可得位置矢量
${{\dot{{r}}}_{{p_i}}} = {{\dot{{r}}}_P} + {{\omega}} \times {{{u}}_{{p_i}}}$ | (29) |
对式(29)求导,可得节点
${{\ddot{{r}}}_{{p_i}}} = {{\ddot{{r}}}_P} + {\dot{{\omega}}} \times {{{u}}_{{p_i}}} + {{\omega}} \times \left( {{{\omega}} \times {{{u}}_{{p_i}}}} \right)$ | (30) |
对于驱动支链
${{{r}}_{{p_i}}} = {{{r}}_{{b_i}}} + {{ L}_i}{{{s}}_i}$ | (31) |
对式(31)求导,可得速度矢量:
${{\dot{{r}}}_{{p_i}}} = {\dot { L}_i}{{{s}}_i} + {{ L}_i}\left( {{{\dot{{\varOmega}}}_i} \times {{{s}}_i}} \right)$ | (32) |
式中,
式(31)两边左叉乘
${{{s}}_{{p_i}}} \times {{\dot{{r}}}_{{p_i}}} = {{ L}_{{p_i}}}{{{s}}_{{p_i}}} \times \left( {{{\dot{{\varOmega}}}_i} \times {{{s}}_i}} \right)= {{ L}_{{p_i}}}{{\dot{{\varOmega}}}_i}$ | (33) |
对式(33)求导,可得每个驱动伸缩杆支链的角加速度矢量为:
${{\ddot{{\varOmega}}}_i} = \frac{1}{{{{ L}_{{p_i}}}}}\left( {{{{s}}_{{p_i}}} \times {{\ddot{{r}}}}_{{p_i}}} + \left( {{{\dot{{\varOmega}}}_i} \times {{{s}}_{{p_i}}}} \right) \times {{{{\dot{{r}}}}_{{p_i}}}} \right) - \frac{{{{\dot { L}}_{{p_i}}}}}{{{ L}_{{p_i}}^2}}{{{s}}_{{p_i}}} \times {{\dot{{r}}}_{{p_i}}}$ | (34) |
将式(32)代入式(34),并忽略式中的低阶导数项,得:
${{\ddot{{\varOmega}}}_i} = \frac{1}{{{{ L}_i}}}{{{s}}_i} \times \left[ {{{{\ddot{{r}}}}_P} + {\dot{{\omega}}} \times {{{u}}_{{p_i}}}} \right]$ | (35) |
设定机构动平台边长p = 0.4 m,下平台边长b = 0.5 m,弹簧支链原长
![]() |
图3 样机模型 Fig. 3 Prototype model |
5.1 运动正反解计算
当给定机构位置矢量
表1 位置反解 Tab. 1 Inverse solution results |
![]() |
![]() |
图4 机构运动位姿结构 Fig. 4 Configuration of the mechanism for the kinematic solution |
当机构驱动支链输入
表2 位置正解 Tab. 2 Forward solution results |
![]() |
5.2 逆运动仿真
设定机构动平台运动轨迹为
![]() |
图5 各支链长度变化 Fig. 5 Length of each chain |
![]() |
图6 驱动支链角速度 Fig. 6 Angular velocity of drive chain |
![]() |
图7 驱动支链角加速度 Fig. 7 Angular acceleration of drive chain |
5.3 样机验证
由机构数值验证和位姿态图可知欠驱动张拉整体并联机构的运动学求解方法的正确性。张拉整体并联机构具有质量小、惯性力低、柔顺性好等特点,可用于柔性机械手、精密隔振平台等场合,在工程应用中不仅要考虑其理论运动学性能,还要考虑其在实际工程应用中位姿可达工作空间,考虑到驱动杆之间可能发生干涉,故机构样机模型几何参数如表3所示。
表3 机构参数 Tab. 3 Mechanism parameters |
![]() |
由表3所示的样机几何参数设计样机模型,样机模型可由初始平衡位置如图3所示运动到如图8所示的4个平衡位置,证明了欠驱动张拉整体并联机构的运动学求解方法工程应用的可行性。
![]() |
图8 平衡位置 Fig. 8 Equilibrium position |
6 结 论
针对刚性并联机构存在质量大、能耗大、惯性力大等问题,根据4–4型四棱柱型张拉整体结构设计一种欠驱动4–SPS张拉整体并联机构,通过驱动4条刚性支链使动平台获得相应的位置和姿态。这类机构具有质量轻、惯性力小、柔顺性好、建模精确及可折叠等优点,在精密精密加工、航空航天等特殊领域具有广阔的应用前景。
对于欠驱动机构,由于存在未约束自由度,运动学难以求解,同时考虑张拉整体并联机构始终保持静态平衡,因此分析机构时必须对运动学和静力学联立求解。根据系统势能最小法建立辅助方程,可求解机构的位置逆解方程和位置正解数值解,这类求解方法可推广到一般欠驱动张拉整体并联机构的运动学分析中。
[1] |
Juan S H,Tur J M M. Tensegrity frameworks:Static analysis review[J]. Mechanism & Machine Theory, 2008, 43(7): 859-881. |
[2] |
Tur J M M,Juan S H. Tensegrity frameworks:Dynamic analysis review and open problems[J]. Mechanism & Machine Theory, 2009, 44(1): 1-18. |
[3] |
Shekarforoush S M M,Eghtesad M,Farid M. Kinematic and static analyses of statically balanced spatial tensegrity mechanism with active compliant components[J]. Journal of Intelligent & Robotic Systems, 2013, 71(34): 287-302. |
[4] |
Bayat J,Crane C D.Closed-form fquilibrium analysis of planar tensegrity structures[C]//Proceedings of ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.New York:ASME,2007:13–23.
|
[5] |
Arsenault M,Gosselin C M. Kinematic,static and dynamic analysis of a planar 2–DOF tensegrity mechanism[J]. Journal of Mechanical Design, 2005, 41(9): 1072-1089. |
[6] |
Shai O,Tehori I,Bronfeld A,et al.Adjustable tensegrity robot based on assur graph principle[C]//Proceedings ASME 2009 International Mechanical Engineering Congress and Exposition.New york:ASME.2009:257–261.
|
[7] |
Ji Z,Li T,Lin M. Kinematics,workspaces and stiffness of a planar class–2 tensegrity mechanism[J]. Up Scientific Bulletin, 2014, 76(3): 53-64. |
[8] |
Ji Z,Li T,Lin M. Kinematics and stiffness of a planar tensegrity parallel mechanism[J]. Periodica Polytechnica Mechanical Engineering, 2014, 58(2): 37-52. |
[9] |
Marshall M Q.Analysis of tensegrity-based parallel platform devices[D].Florida:University of Florida,2003.
|
[10] |
Arsenault M,Gosselin C M. Kinematic and static analysis of a three-degree-of-freedom spatial modular tensegrity mechanism[J]. International Journal of Robotics Research, 2008, 27(27): 951-966. |
[11] |
Arsenault M,Gosselin C M. Kinematic and static analysis of a 3–PUS spatial tensegrity mechanism[J]. Mechanism & Machine Theory, 2009, 44(1): 162-179. |
[12] |
Abadi B N R,Farid M,Mahzoon M. Introducing and analyzing a novel three-degree-of-freedom spatial tensegrity mechanism[J]. Journal of Computational & Nonlinear Dynamics, 2014, 9(2): 94-94. |
[13] |
Shekarforoush S M M,Eghtesad M,Farid M.Design of statically balanced six-degree-of-freedom parallel mechanisms based on tensegrity system[C]//Proceedings of ASME 2009 International Mechanical Engineering Congress and Exposition.New York: ASME.2009:245-253.
|
[14] |
Abadi B N R,Shekarforoush S M M,Mahzoon M,et al. Kinematic,stiffness,and dynamic analyses of a compliant tensegrity mechanism[J]. Journal of Mechanisms & Robotics, 2014, 6(4): 041001. |
[15] |
Ji Zhifei,Li Tuanjie,Lin Min. Research on a tensegrity parallel mechanism for wave energy harvesting[J]. Journal of Xidian University, 2015, 42(4): 70-75. [纪志飞,李团结,林敏. 张拉整体并联机构波浪能采集研究[J]. 西安电子科技大学学报(自然科学版), 2015, 42(4): 70-75. DOI:10.3969/j.issn.1001-2400.2015.04.012] |
[16] |
Kenner H. Geodesic math and how to use it[J]. Obesity Surgery, 1976, 11(4): 524-527. |