黏性土中渗流存在起始水力坡降[1]。如果土中水力坡降i小于起始坡降i0,土中渗流就不会发生。只有当i大于i0,土中渗流才会发生。该现象已被岩土工程研究者认识并逐渐取得共识。因此,研究基于起始水力坡降的软黏土固结理论并分析起始水力坡降i0对固结性状的影响具有重要的理论和实际意义。
起始水力坡降会引起黏性土固结过程中存在移动边界,致使其求解异常困难。Pascal等[2]最早给出考虑起始水力坡降的1维固结有限差分解,首次分析固结中的移动界面问题,阐述了起始水力坡降引起超静孔压不能完全消散的固结性状。基于此,刘慈群[3]给出了考虑起始水力坡降的土体1维固结近似解,但对边界移动过程的描述相对欠缺。刘忠玉等[4]利用有限差分的隐式格式给出了考虑起始水力坡降的数值解答。Xie等[5]给出了变荷载下考虑起始水力坡降的黏性土1维线性固结近似解析解,分析了起始水力坡降对固结性状的影响。Zhou等[6]利用Stefan问题的求解思路,给出了特定变荷载下考虑起始水力坡降的黏性土1维线性固结解析解。王坤等[7]在Xie等研究的基础上给出了初始超静孔隙水压力沿深度非均匀分布下考虑起始水力坡降的固结解析解。
但以上考虑起始水力坡降的固结模型均假定土体压缩性和渗透性在固结过程中保持不变,即压缩模量(
作者基于可退化为三元件流变模型、两元件流变模型及线弹性模型的四元件流变模型,给出了考虑起始水力坡降的软黏土流变固结解析解。基于此,着重分析起始水力坡降及黏土流变特性对固结性状的影响,分析不同流变模型对黏土固结性状影响的异同。
1 移动边界分析及固结模型的建立 1.1 移动边界分析如图1所示,无限均匀分布的瞬时荷载
![]() |
图1 移动边界及最终残留超静孔压 Fig. 1 Moving boundary and the final residual excess pore water pressure |
$v = \left\{ \begin{aligned} &0,i \le {i_0}{\text{;}}\\ &{k_{\rm{v}}}\left( {i - {i_0}} \right),i > {i_0} \end{aligned} \right.$ | (1) |
式中,v为土中水的渗流速度,kv为渗透系数,i为水力坡降,i0为起始水力坡降。起始水力坡降致使固结中渗流锋面在单面排水条件下从排水面开始逐步下移,即存在着移动边界。记t时刻渗流锋面距透水面的距离为h(t),此时渗流锋面
$u\left[ {h\left( t \right),t} \right] = {q_0}$ | (2) |
$\frac{1}{{{\gamma _{\rm{w}}}}}{\left. {\frac{{\partial u}}{{\partial {\textit{z}}}}} \right|_{{\textit{z}} = h\left( t \right)}} = {i_0}$ | (3) |
式中,t为时间,h(t)为t时刻渗流锋面距排水面的距离,
研究表明,起始水力坡降i0将导致变形稳定后土中超静孔压仍不能完全消散。图1给出了单面排水下渗流锋面至土层底面时最终残留的超静孔压沿深度分布示意图。
1.2 渗流锋面未至土层底面的固结模型如图2(a)所示,应用四元件流变模型描述黏土的流变特性。该流变模型由独立的弹簧及黏壶与Kelvin体串联组成,其中,独立弹簧的弹性模量为
![]() |
图2 黏土流变模型 Fig. 2 Rheological models of clays |
当
${\varepsilon _{\textit{z}}} = \frac{{{{\sigma '_{\textit{z}}}}}} {E_0} \int_0^t {\frac{{{{\sigma'_{\textit{z}}}}}}{{{\eta _0}}}{\rm{d}}\tau } + \int_0^t {\frac{{{{\sigma '_{\textit{z}}}}}}{{{\eta _1}}}{{\rm{e}}^{ - \frac{{{E_1}\left( {t - \tau } \right)}}{{{\eta _1}}}}}{\rm{d}}\tau } $ | (4) |
式中,
$\frac{{\partial {\varepsilon _{\textit{z}}}}}{{\partial t}} = \frac{1}{{{E_0}}}\frac{{\partial {{\sigma '_{\textit{z}}}}}}{{\partial t}} + \frac{{{{\sigma '_{\textit{z}}}}}}{{{\eta _0}}} + \frac{1}{{{\eta _1}}}\int_0^t {\frac{{\partial {{\sigma '_{\textit{z}}}}}}{{\partial \tau }}{{\rm{e}}^{ - \frac{{{E_1}\left( {t - \tau } \right)}}{{{\eta _1}}}}}{\rm{d}}\tau } $ | (5) |
1维固结的普遍连续方程为:
$\frac{{\partial v}}{{\partial {\textit{z}}}} = - \frac{{\partial {\varepsilon _{\textit{z}}}}}{{\partial t}}$ | (6) |
瞬时加载下有效应力原理为:
${\sigma '_{\textit{z}}} = {q_0} - u$ | (7) |
如果
$ {c_{\rm{v}}}\frac{{{\partial ^2}u}}{{\partial {{\textit{z}}^2}}} \! =\! \frac{{\partial u}}{{\partial t}} \! -\! \frac{{{E_0}\left( {{q_0}\! -\! u} \right)}}{{{\eta _0}}} \! +\! \frac{{{E_0}}}{{{\eta _1}}}\int_0^t {\frac{{\partial u}}{{\partial \tau }}{{\rm{e}}^{ \! \! -\! \frac{{{E_1}\left( {t \! -\! \tau } \right)}}{{{\eta _1}}}}}{\rm{d}}\tau } , 0 < {\textit{z}} \le h\left( t \right) $ | (8) |
$u = {q_0},{\textit{z}} \ge h\left( t \right)$ | (9) |
式(8)中,
超静孔隙水压力的初始条件为:
$u\left( {{\textit{z}},0} \right) = {q_0}$ | (10) |
土层顶面边界及移动边界条件可分别表达为:
$u\left( {0,t} \right) = 0,t > 0$ | (11) |
$\frac{{\partial u}}{{\partial {\textit{z}}}}\left[ {h\left( t \right),t} \right] = {i_0}{\gamma _{\rm{w}}},t > 0$ | (12) |
$u\left[ {h\left( t \right),t} \right] = {q_0},t > 0$ | (13) |
如果渗流锋面至土层底面(
${c_{\rm{v}}}\frac{{{\partial ^2}u}}{{\partial {{\textit{z}}^2}}} \!=\!\! \frac{{\partial u}}{{\partial t}} \!+\! \frac{{{E_0}}}{{{\eta _0}}}\left( {u \!-\! {q_0}} \right) \!+ \frac{{{E_0}}}{{{\eta _1}}}\int_0^t {\frac{{\partial u}}{{\partial \tau }}{{\rm{e}}^{ \!-\! \frac{{{E_1}\left( {t \!-\! \tau } \right)}}{{{\eta _1}}}}}{\rm{d}}\tau } , 0 < {\textit{z}} \le H$ | (14) |
$u\left( {0,t} \right) = 0,t > 0$ | (15) |
$\frac{{\partial u}}{{\partial {\textit{z}}}}\left( {H,t} \right) = {i_0}{\gamma _{\rm{w}}},t > 0$ | (16) |
由第1节的分析可知,在渗流锋面未至底面前,渗流锋面不断下移,即
$\begin{aligned} &\frac{{{\partial ^2}w}}{{\partial {{\textit{z}}^2}}} \!\!=\!\! \frac{{\partial w}}{{\partial t}} \!+\! \frac{{{E_0}}}{{{\eta _0}}}\!\left( \! {w \!-\! {q_0} \!+\! {i_0}{\gamma _{\rm{w}}}{\textit{z}}} \!\right) \!+\!\! \frac{{{E_0}}}{{{\eta _1}}}\!\int_0^t \!\!{\frac{{\partial w}}{{\partial \tau }}{{\rm{e}}^{ \!-\! \frac{{{E_1}\left(\! {t \!-\! \tau } \! \right)}} {{{\eta _1}}}}} \!{\rm{d}}\tau }\!,\!\!\!\!\\ &\quad\quad\quad\quad\quad\quad\qquad\!\! {\textit{z}} \le h\left( t \right) \end{aligned}$ | (17) |
$w\left( {{\textit{z}},t} \right) = {q_0} - {\gamma _{\rm{w}}}{i_0}{\textit{z}},\;{\textit{z}} > h\left( t \right)$ | (18) |
相应的求解条件为:
$w\left( {0,t} \right) = 0,t > 0$ | (19) |
$\frac{{\partial w}}{{\partial {\textit{z}}}}\left[ {h\left( t \right),t} \right] = 0,t > 0$ | (20) |
$w\left( {{\textit{z}},0} \right) = {q_0} - {i_0}{\gamma _{\rm{w}}}{\textit{z}}$ | (21) |
根据太沙基解的形式,满足上述求解条件的固结解析解可固定表达为:
$w\left( {{\textit{z}},t} \right) = \sum\limits_{m = 1}^\infty {{T_m}\left( t \right)\sin \left[ {{{M{\textit{z}}} / {h\left( t \right)}}} \right]} $ | (22) |
式中:
$\begin{aligned}[b] &{c_{\rm{v}}}\!\frac{{{M^2}}}{{{h^2}\!\left(\! t \!\right)}}{T_m}\!\left(\! t\! \right) \!+\! {T'_m}\!\left(\! t \!\right) \!+\!\! \frac{{{E_0}}}{{{\eta _0}}}{T_m}\!\left(\! t \!\right) \!+\!\! \frac{{{E_0}}}{{{\eta _1}}}\!\int_0^t\! \!\left[\! {{{T'_m}}\!\left(\! \tau \!\right)\!{{\rm{e}}^{ \!-\! \frac{{{E_1}\left( \!{t - \tau } \!\right)}}\!{{{\eta _1}}}}}}\! \!\right]{\rm{d}}\tau-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\qquad\!\!\!\!\quad \frac{2}{M}\frac{{{E_0}}}{{{\eta _0}}}\left[ {{q_0} - \frac{{\sin\; M}}{M}{i_0}{\gamma _{\rm{w}}}h\left( t \right)} \right] = 0 \end{aligned}$ | (23) |
式中,
${T_m}\left( 0 \right) = \frac{2}{M}\left[ {{q_0} - \frac{{\sin\; M}}{M}{i_0}{\gamma _{\rm{w}}}h\left( t \right)} \right]$ | (24) |
如果
${F_m}\left( s \right) = \frac{{\displaystyle \frac{2}{M}\left[ {{q_0} - \displaystyle \frac{{\sin \;M}}{M}{i_0}{\gamma _{\rm{w}}}h\left( t \right)} \right]\left( {1 + \frac{{{E_0}}}{{{\eta _0}s}} + \displaystyle \frac{{{E_0}}}{{{\eta _1}s + {E_1}}}} \right)}}{{{c_{\rm{v}}}\displaystyle \frac{{{M^2}}}{{{h^2}\left( t \right)}} + \displaystyle \frac{{{E_0}}}{{{\eta _0}}} + s + \displaystyle \frac{{{E_0}s}}{{{\eta _1}s + {E_1}}}}}$ | (25) |
式中,
对式(25)取拉普拉斯逆变换得
${T_m}\left( t \right) \!= \!\frac{{2{q_0}}}{M}\left(\! {1 \!-\! \frac{{\sin\; M}}{M}RX}\! \right)\left( \!{{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!-\! {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} \!+\! {c_3}} \right)$ | (26) |
式中,
将式(26)代入式(22),得到
$\begin{aligned}[b] &w\left( {{\textit{z}},t} \right) = \sum\limits_{m = 1}^\infty {\frac{{2{q_0}}}{M}\sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}}} \left( {1 - \frac{{\sin \;M}}{M}RX} \right)\times\\ &\quad\quad \quad \left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right) \end{aligned}$ | (27) |
$\begin{aligned}[b] & u\left( {{\textit{z}},t} \right) = {i_0}{\gamma _w}{\textit{z}} + \sum\limits_{m = 1}^\infty \left[ {\frac{{2{q_0}}}{M}} \right.\left( {1 - \frac{{\sin M}}{M}RX} \right) \times \\ & \quad\quad \quad \left. {\left( {{c_1}{{\rm{e}}^{{x_1}}}^{{T_{\rm{v}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right)\sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}}} \right] \end{aligned}$ | (28) |
根据式(13),渗流锋面
$\begin{aligned}[b] &{q_0} = {i_0}{\gamma _{\rm{w}}}h\left( t \right) + \sum\limits_{m = 1}^\infty \frac{2{q_0}\sin\; M}{M}\left( 1 - \frac{\sin\; M}{M}RX \right) \times\\ &\quad \quad \left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right) \end{aligned} $ | (29) |
如果将式(29)两侧同时除以外荷载
$1 = RX - \sum\limits_{m = 1}^\infty {\frac{2}{M}\left[ {{{\left( { - 1} \right)}^m} + {{RX} / M}} \right]\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right)} $ | (30) |
式(30)确定了渗流锋面位置
获得孔压解答后,土层的平均固结度Ut定义为:
${U_{\rm{t}}} = \frac{{{q_0}H - \displaystyle\int_0^H {u{\rm{d}}{\textit{z}}} }}{{{q_0}H}} = \frac{{{q_0}h\left( t \right) - \displaystyle\int_0^{h\left( t \right)} {u{\rm{d}}{\textit{z}}} }}{{{q_0}H}}$ | (31) |
将式(28)代入式(31),得到渗流锋面未至底面时土层平均固结度Ut为:
${U_{\rm{t}}}\! \!= \!\! X \!\left[ \!{1 \!-\! \frac{{RX}}{2} \!-\!\! \sum\limits_{m \!=\! 1}^\infty \! {\frac{2}{{{M^2}}}\!\left(\! {1\! -\! \frac{{\sin \;M}}{M}RX} \!\right)\!\left(\! {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!-\! {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} \!+\! {c_3}} \!\right)} } \!\right]$ | (32) |
如果渗流锋面始终不能至底面,残留于土中的超静孔压沿深度分布为:
${u_\infty } =\! \left\{ \begin{aligned} &{i_0}{\gamma _{\rm{w}}}{\textit{z}} \!+\! \sum\limits_{m =1}^\infty {\frac{{2{c_3}{q_0}}}{M}\left( {1 - \frac{{\sin \;M}}{M}RX} \right)} \sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}},{\textit{z}} \!<\! h\left( t \right);\\ &{q_0},{\textit{z}} \ge h\left( t \right) \end{aligned} \right.$ | (33) |
如果渗流锋面至土层底面,超静孔压残留值为:
${u_\infty } = u\left( {{\textit{z}},\infty } \right) = {i_0}{\gamma _{\rm{w}}}{\textit{z}} + \sum\limits_{m = 1}^\infty {\frac{{2{c_3}{q_0}}}{M}\left( {1 - \frac{{\sin\; M}}{M}R} \right)} \sin\; \frac{{M{\textit{z}}}}{H}$ | (34) |
根据式(34)可求得渗流锋面至土层底面的条件为:
$R + \sum\limits_{m = 1}^\infty {\frac{2}{M}\frac{{{a_2}}}{{{a_2} + b{M^2}}}\left[ {\sin\; M - \frac{R}{M}} \right]} < 1$ | (35) |
如果取式(35)级数的第1项,该条件为:
$R < {{\left( {4{a_2}{{\rm{{\text{π}} }}^2} + b{{\rm{{\text{π}} }}^4} - 16{a_2}{\rm{{\text{π}} }}} \right)} / {\left( {4{a_2}{{\rm{{\text{π}} }}^2} + b{{\rm{{\text{π}} }}^4} - 32{a_2}} \right)}}$ | (36) |
式(36)给出了同时考虑起始水力坡降与流变特性后,渗流锋面到达土层底面时参数R应满足的条件,其表达与线弹性本构模型下的表达明显不同。
2.2 渗流锋面至土层底面后的解析解如果R值满足式(36),渗流锋面能下移至土层底面。当移动边界至土层底面后(
$\begin{aligned}[b] &u\left( {{\textit{z}},t} \right) = {i_0}{\gamma _{\rm{w}}}{\textit{z}} + \sum\limits_{m = 1}^\infty {\frac{{2{q_0}}}{M}\left( {1 - \frac{{\sin\; M}}{M}R} \right) \times } \\ &\quad\quad\quad \left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right)\sin\; \frac{{M{\textit{z}}}}{H} \end{aligned}$ | (37) |
式中,
${U_{\rm{t}}} = 1 - \frac{R}{2} - \sum\limits_{m = 1}^\infty {\frac{2}{{{M^2}}}\left( {1 - \frac{{\sin\; M}}{M}R} \right)\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right)} $ | (38) |
如果四元件流变模型退化为Merchant流变模型,考虑起始水力坡降的超静孔压计算式(28)、移动边界计算式(30)及平均固结度计算式(32)分别退化为:
$u \!=\! {i_0}{\gamma _{\rm{w}}}{\textit{z}} \!+\! \sum\limits_{m = 1}^\infty \! {\frac{{2{q_0}}}{M}\left(\! {1 \!-\! \frac{{\sin\; M}}{M}RX}\! \right)\left(\! {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!-\! {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}}} \!\right)\sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}}} $ | (39) |
$ 1 = RX + \sum\limits_{m = 1}^\infty {\frac{2}{M}\left[ {{{\left( { - 1} \right)}^m} - \frac{{RX}}{M}} \right]\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}}} \right)} $ | (40) |
${U_{\rm{t}}} \!=\! X\left[\! {1 \!-\! \frac{{RX}}{2} \!- \!\sum\limits_{m = 1}^\infty {\frac{2}{{{M^2}}}\left( {1 \!-\! \frac{{\sin\; M}}{M}RX} \right)\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!-\! {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}}} \right)} }\! \right]$ | (41) |
式中,
如果四元件流变模型退化为两元件Maxwell流变模型,此时超静孔压计算式(28)、移动边界计算式(30)及平均固结度计算式(32)分别退化为:
$u \!=\! {i_0}{\gamma _{\rm{w}}}{\textit{z}} \!+\! \sum\limits_{m = 1}^\infty {\left[ {\frac{{2{q_0}}}{M}\sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}}\left( {1 \!-\! \frac{{\sin \;M}}{M}RX} \right)\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!+\! {c_3}} \right)} \right]} $ | (42) |
$ 1 = RX + \sum\limits_{m = 1}^\infty {\frac{2}{M}\left[ {{{\left( { - 1} \right)}^m} - \frac{{RX}}{M}} \right]\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} + {c_3}} \right)} $ | (43) |
${U_{\rm{t}}} \!=\! X\left[ {1 \!-\! \frac{{RX}}{2} \!-\! \sum\limits_{m = 1}^\infty {\frac{2}{{{M^2}}}\left( {1 \!-\! \frac{{\sin\; M}}{M}RX} \right) \times \left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!+\! {c_3}} \right)} } \right]$ | (44) |
式中,
如果四元件流变模型转变为线弹性模型,此时超静孔隙水压力的解析解理应退化为Xie等[5]瞬时加载下考虑起始水力坡降的解答。如果渗流锋面未至土层底面,超静孔压计算式(28)、移动边界计算式(30)及平均固结度计算式(32)分别退化为:
$u = {i_0}{\gamma _{\rm{w}}}{\textit{z}} + \sum\limits_{m = 1}^\infty {\frac{{2{q_0}}}{M}\left( {1 - \frac{{\sin\; M}}{M}RX} \right) {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}}} \sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}}} $ | (45) |
$1 = RX + \sum\limits_{m = 1}^\infty {\frac{2}{M}\left[ {{{\left( { - 1} \right)}^m} - \frac{{RX}}{M}} \right]{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}}} $ | (46) |
${U_{\rm{t}}} = X\left[ {1 - \frac{{RX}}{2} - \sum\limits_{m = 1}^\infty {\frac{{2{c_1}}}{{{M^2}}}\left( {1 - \frac{{\sin\; M}}{M}RX} \right){{\rm{e}}^{{x_1}{T_{\rm{v}}}}}} } \right]$ | (47) |
式中,
如果不考虑存在起始水力坡降,即令
$ u\left(\! {{\textit{z}},t} \!\right) \!=\! \sum\limits_{m = 1}^\infty \!{\frac{{2{q_0}\sin\; M}}{M}\!\sin \;\frac{{M{\textit{z}}}}{H}} \!\left(\!\! {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!\!-\!\! {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} \!\!+\! {c_3}} \!\!\right)$ | (48) |
式(48)恰好是Xie等[16]瞬时加载下基于四元件流变模型1维固结解析解。以上解的退化说明,现有的瞬时加载下仅考虑起始水力坡降而忽略流变特性的固结解析解和达西定律下考虑四元件流变模型的固结解析解均是本文解析解的特例。
3.3 解析解与差分解的对比为进一步验证本文方法和解答的合理性,将所得解析解与差分解进行对比。图3(a)为不同R值下,渗流移动边界随时间的变化曲线;图3(b)为不同R值下,
![]() |
图3 解析解与差分解对比 Fig. 3 Comparison between analytical solution and differential decomposition |
4 实例计算和固结性状分析
由第3节可知,影响固结性状的因素主要有起始水力坡降和黏土流变特性两方面。以下将着重分析这两方面因素对固结性状的影响,计算分析参数见表1。
表1 分析计算所用的模型参数 Tab. 1 Adopted parameters in the following analysis |
![]() |
4.1 R对固结性状的影响
起始水力坡降
![]() |
图4 R对移动边界位置随时间下移的影响 Fig. 4 Influence of R on the moving boundary |
考虑起始水力坡降与四元件流变特性后,土中超静孔隙水压力不能完全消散。如图5(a)所示,
![]() |
图5 R对超静孔压消散的影响 Fig. 5 Influence of R on the dissipation of excess pore water pressure |
图6为不同R下土层平均固结度与时间关系曲线,进一步反映了超静孔压消散性状。
![]() |
图6 R对平均固结度Ut的影响 Fig. 6 Influence of R on the average consolidation degree Ut |
4.2 不同流变模型对固结性状的影响
由第1.2节可知,三元件模型、两元件模型及线弹性模型分别为四元件流变模型参数
图7为不同流变模型下,移动边界随时间的下移曲线。由图7可知,不同流变模型下移动边界随时间的下移曲线基本重合,这说明流变模型参数对超静孔压前期的消散过程基本无影响。
![]() |
图7 不同流度型下X–Tv曲线 Fig. 7 Influence of different models on X–Tv |
该固结性状可从
![]() |
图8 不同流变模型下z/H = 0.5处u/q0–Tv曲线 Fig. 8 Influence of different models on u/q0–Tv at z/H = 0.5 |
随着超静孔压的消散,在固结后期不同模型下超静孔压随时间消散曲线虽略有差异,但差异仍很小。故不同流变模型对孔压消散影响甚微导致不同流变模型下平均固结度随时间变化曲线差异也很微小,如图9所示。
![]() |
图9 不同流变模型下平均固结度变化 Fig. 9 Changes of different models on the average degree of consolidation |
5 结 论
考虑黏性土中存在的起始水力坡降及其流变特性,基于传统太沙基1维固结理论重新推导建立了1维固结控制方程并得到其解析解,结论如下:
1)给出了基于起始水力坡降和四元件流变模型的软黏土1维固结解析解。该解答为同时考虑起始水力坡降和流变特性的实际软黏土固结计算提供了可供参考的计算方法。
2)本文解析解与数值解对比相差无几,验证了本文解析方法的可靠性。本文解可退化为考虑起始水力坡降的线弹性固结解析解,也可退化为达西定律下四元件流变模型的软黏土1维固结解析解。这2种情况下的解析解均是本文解析解的特例。
3)考虑流变特性后,与线弹性模型下结果相比,起始水力坡降对软黏土流变固结性状的影响并未发生改变,但渗流锋面至底面的判别条件发生改变。考虑起始水力坡降后,尤其是固结初期,不同流变模型对超静孔压消散过程的影响很小。
[1] |
Miller R J,Low P F. Threshold gradient for water flow in clay systems[J]. Soil Science Society of America Journal, 1963, 27(6): 605-609. DOI:10.2136/sssaj1963.03615995002700060013x |
[2] |
Pascal F,Pascal H,Murray D W. Consolidation with threshold gradients[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(3): 247-261. DOI:10.1002/(ISSN)1096-9853 |
[3] |
Liu Ciqun. Approximate solutions for one-dimensional consolidation with a threshold gradient[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(3): 107-109. [刘慈群. 有起始比降固结问题的近似解[J]. 岩土工程学报, 1982, 4(3): 107-109. DOI:10.3321/j.issn:1000-4548.1982.03.010] |
[4] |
Liu Zhongyu,Zhang Tianhang,Ma Chongwu. Effect of initial hydraulic gradient on one-dimensional consolidation of saturated clays[J]. Rock and Soil Mechanics, 2007, 28(3): 467-470. [刘忠玉,张天航,马崇武. 起始水力梯度对饱和黏土一维固结的影响[J]. 岩土力学, 2007, 28(3): 467-470. DOI:10.3969/j.issn.1000-7598.2007.03.007] |
[5] |
Xie K H,Wang K,Wang Y L,et al. Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient[J]. Computers and Geotechnics, 2010, 37(4): 487-493. DOI:10.1016/j.compgeo.2010.02.001 |
[6] |
Zhou Y,Bu W K,Lu M M. One-dimensional consolidation with a threshold gradient:A Stefan problem with rate-dependent latent heat[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(16): 2825-2832. |
[7] |
Wang Kun,Xie Kanghe,Liu Xingwang,et al. Solution for one-dimensional consolidation with threshold gradient subjected to non-uniformly distributed initial pore water pressure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1419-1424. [王坤,谢康和,刘兴旺,等. 初始孔压非均布考虑起始比降的一维固结解[J]. 岩土工程学报, 2011, 33(9): 1419-1424.] |
[8] |
Li Chuanxun,Wang Kun. Analysis of one-dimensional nonlinear consolidation for soft soils with threshold gradient[J]. Journal of Jiangsu University (Natural Science Edition), 2014, 35(6): 732-737. [李传勋,王坤. 考虑起始水力坡降的软土一维非线性固结分析[J]. 江苏大学学报 (自然科学版), 2014, 35(6): 732-737.] |
[9] |
Huang Jieqing,Xie Xinyu,Wang Wenjun,et al. Study on one-dimensional nonlinear consolidation behavior for saturated soils with threshold gradient[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 355-363. [黄杰卿,谢新宇,王文军,等. 考虑起始比降的饱和土体一维复杂非线性固结研究[J]. 岩土工程学报, 2013, 35(2): 355-363.] |
[10] |
Li Chuanxun,Dong Xingquan,Jin Dandan,et al. Nonlinear large-strain consolidation analysis of soft clay considering threshold hydraulic gradient[J]. Rock and Soil Mechanics, 2017, 38(2): 377-384. [李传勋,董兴泉,金丹丹,等. 考虑起始水力坡降的软土大变形非线性固结分析[J]. 岩土力学, 2017, 38(2): 377-384.] |
[11] |
Taylor D W,Merchant W. A theory of clay consolidation accounting for secondary compression[J]. Journal of Mathematics and Physics, 1940, 19(1/2/3/4): 167-185. |
[12] |
Xia Jun,Mei Guoxiong,Mei Ling,et al. Biot’s consolidation finite layer analysis of viscoelastic soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 437-441. [夏君,梅国雄,梅岭,等. 考虑固结的黏弹性地基的有限层法[J]. 岩土工程学报, 2009, 31(3): 437-441. DOI:10.3321/j.issn:1000-4548.2009.03.021] |
[13] |
Chen Xiaoping,Bai Shiwei. Research on creep consolidation characteristics and calculation model of soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 728-734. [陈晓平,白世伟. 软土蠕变–固结特性及计算模型研究[J]. 岩石力学与工程学报, 2003, 22(5): 728-734. DOI:10.3321/j.issn:1000-6915.2003.05.008] |
[14] |
Yin J H,Graham J. Elastic visco-plastic modelling of one-dimensional consolidation[J]. Geotechnique, 1996, 46(3): 515-527. DOI:10.1680/geot.1996.46.3.515 |
[15] |
Bjerrum L. Engineering geology of norwegian normally-consolidated marine clays as related to settlements of buildings[J]. Geotechnique, 1967, 17(2): 63-117. |
[16] |
Xie K H,Xie X Y,Li X B. Analytical theory for one-dimensional consolidation of clayey soils exhibiting rheological characteristics under time-dependent loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(14): 1833-1855. DOI:10.1002/nag.v32:14 |
[17] |
Li Xibin,Xie Kanghe,Chen Fuquan. One dimensional consolidation and permeability tests considering stress history and rheological characteristic of soft soils[J]. Journal of Hydraulic Engineering, 2013, 44(1): 18-25. [李西斌,谢康和,陈福全. 考虑软土流变特性和应力历史的一维固结与渗透试验[J]. 水利学报, 2013, 44(1): 18-25. DOI:10.3969/j.issn.0559-9350.2013.01.005] |