工程科学与技术   2019, Vol. 51 Issue (2): 53-60
考虑起始水力坡降的软黏土流变固结解析解
李传勋, 马浩天, 金丹丹     
江苏大学 土木工程与力学学院,江苏 镇江 212013
基金项目: 国家自然科学基金资助项目(51878320)
摘要: 软黏土中渗流存在的起始水力坡降会对固结性状有重要影响已逐渐被认识。但能同时考虑起始水力坡降及软黏土流变特性的固结理论仍鲜见报道,对其解析解的研究更为罕见。针对现有理论的不足,考虑软黏土中渗流存在的起始水力坡降及黏性土的流变特性,基于太沙基1维固结理论建立其控制方程,应用拉普拉斯变换获得其解析解。目前存在的考虑起始水力坡降的线性固结解析解和达西定律下考虑流变模型的固结解析解均是本文解的特例,且本文所得解析解与相应差分解的计算结果十分相近。基于该解析解着重分析了起始水力坡降和不同流变模型对固结性状的影响。结果表明:考虑软黏土流变特性后,起始水力坡降(i0)、土层厚度(H)与外荷载(q0)的比值(R)对固结性状的影响并未发生明显改变;R值越大,移动边界到达土层底面所需时间越长,相同时刻土中残留的超静孔压值越大,土层平均固结度越小。考虑流变特性后,移动边界到达土层底面的条件发生改变。如果流变模型参数取值相同,不同流变模型下软黏土固结初期超静孔压消散曲线基本重合,移动边界随时间的下移曲线亦基本重合;固结后期超静孔压消散曲线虽略有差异,但其对计算结果影响甚微,可忽略。
关键词: 软黏土    起始水力坡降    移动边界    流变固结    解析解    
Analytical Solution for Rheological Consolidation of Soft Clay with Threshold Hydraulic Gradient
LI Chuanxun, MA Haotian, JIN Dandan     
Faculty of Civil Eng. and Mechanics, Jiangsu Univ., Zhenjiang 212013, China
Abstract: The influence of a threshold gradient of water flow in soft clays on consolidation behavior has been gradually recognized. However, the consolidation theory with consideration of a threshold hydraulic gradient and rheological characteristics has rarely been reported in the literature so far, and especially the analytical solution for this problem has never been studied. In view of the deficiency in consolidation theories, the governing equation for one-dimensional consolidation of the clay with consideration of the threshold gradient and rheological characteristics is developed on the basis of Terzaghi’s theory for one-dimensional consolidation. An analytical solution for the governing equation is obtained by the method of Laplace transform. The analytical solutions for one-dimensional consolidation derived so far considering either a threshold gradient or a rheological model are all special cases of the solution derived herein. Based on the solution proposed in this study, the influences of the threshold hydraulic gradient and different rheological models on consolidation behavior are investigated. The results show that the influences of the ratio of the threshold gradient (i0) and the thickness of clay layer (H) to the load (q0) on consolidation behavior with consideration of rheological characteristic do not evidently change comparing to that under consideration of linear elastic model. The larger R is, the longer it takes for the moving boundary to reach the bottom of the layer, and the larger the ultimate value of excess pore water pressure is, and the smaller the ultimate average degree of consolidation is. Moreover, the condition that the moving boundary reaches the bottom of the layer differs with that with no consideration of rheological characteristic. If the same parameters of different rheology models are adopted, the dissipation curves of excess pore water pressure and the variation of moving boundary with time under different rheology models are almost same at the early stage of consolidation. At the late stage of consolidation, the difference between dissipation curves of excess pore water pressure different rheological models is so little that the influence of different rheological models on the result can be ignored.
Key words: soft clay    threshold hydraulic gradient    moving boundary    rheological consolidation    analytical solution    

黏性土中渗流存在起始水力坡降[1]。如果土中水力坡降i小于起始坡降i0,土中渗流就不会发生。只有当i大于i0,土中渗流才会发生。该现象已被岩土工程研究者认识并逐渐取得共识。因此,研究基于起始水力坡降的软黏土固结理论并分析起始水力坡降i0对固结性状的影响具有重要的理论和实际意义。

起始水力坡降会引起黏性土固结过程中存在移动边界,致使其求解异常困难。Pascal等[2]最早给出考虑起始水力坡降的1维固结有限差分解,首次分析固结中的移动界面问题,阐述了起始水力坡降引起超静孔压不能完全消散的固结性状。基于此,刘慈群[3]给出了考虑起始水力坡降的土体1维固结近似解,但对边界移动过程的描述相对欠缺。刘忠玉等[4]利用有限差分的隐式格式给出了考虑起始水力坡降的数值解答。Xie等[5]给出了变荷载下考虑起始水力坡降的黏性土1维线性固结近似解析解,分析了起始水力坡降对固结性状的影响。Zhou等[6]利用Stefan问题的求解思路,给出了特定变荷载下考虑起始水力坡降的黏性土1维线性固结解析解。王坤等[7]在Xie等研究的基础上给出了初始超静孔隙水压力沿深度非均匀分布下考虑起始水力坡降的固结解析解。

但以上考虑起始水力坡降的固结模型均假定土体压缩性和渗透性在固结过程中保持不变,即压缩模量( ${E_{\rm{s}}}$ )和渗透系数( ${k_{\rm{v}}}$ )始终为常数,这显然有悖于土体的固结特性。鉴于此,李传勋等[8]在自重应力沿深度均匀分布的情况下给出了考虑起始水力坡降的软土非线性固结数值解。黄杰卿等[9]分析了考虑起始水力坡降及大变形特性的软黏土非线性固结性状。李传勋等[10]利用有限差分法进一步详细阐述了起始水力坡降对软土大变形非线性固结中移动边界、超静孔隙水压力消散及固结变形的影响。需特别说明的是,以上基于起始水力坡降的软黏土固结理论虽考虑了软土的非线性固结特性,但仍忽略了黏土所固有的流变特性。早在1940年,Taylor和Merchant[11]就已证明流变特性对软黏土固结性状的影响不容忽视。目前的软土流变固结理论在解析、数值及试验方面取得不少进展:夏君等[12]给出了黏弹性地基比奥固结有限层求解格式;陈晓平等[13]根据软黏土固结和流变耦合机理,建立了一个非线性弹黏性固结模型;Yin等[14]根据Bjerrum提出的时间线模型[15],建立了弹黏塑性流变模型;Xie等[16]给出了不同荷载条件下,软黏土流变固结解析解;李西斌等[17]通过对萧山软土的渗透试验,验证其中存在明显的流变特性。但是,前述的软黏土流变固结理论均采用达西定律描述黏性土中渗流,目前对能同时考虑起始水力坡降及流变特性的软黏土固结理论仍鲜见报道。

作者基于可退化为三元件流变模型、两元件流变模型及线弹性模型的四元件流变模型,给出了考虑起始水力坡降的软黏土流变固结解析解。基于此,着重分析起始水力坡降及黏土流变特性对固结性状的影响,分析不同流变模型对黏土固结性状影响的异同。

1 移动边界分析及固结模型的建立 1.1 移动边界分析

图1所示,无限均匀分布的瞬时荷载 ${q_0}$ 作用于厚度为H的土层表面。土层顶面透水、底面不透水(单面排水),此时排水距离等于土层厚度H。认为黏性土中渗流存在起始水力坡降i0,其渗流模型为:

图1 移动边界及最终残留超静孔压 Fig. 1 Moving boundary and the final residual excess pore water pressure

$v = \left\{ \begin{aligned} &0,i \le {i_0}{\text{;}}\\ &{k_{\rm{v}}}\left( {i - {i_0}} \right),i > {i_0} \end{aligned} \right.$ (1)

式中,v为土中水的渗流速度,kv为渗透系数,i为水力坡降,i0为起始水力坡降。起始水力坡降致使固结中渗流锋面在单面排水条件下从排水面开始逐步下移,即存在着移动边界。记t时刻渗流锋面距透水面的距离为h(t),此时渗流锋面 ${\textit{z}} = h\left( t \right)$ 处超静孔隙水压力u及水力坡降i满足的边界条件为:

$u\left[ {h\left( t \right),t} \right] = {q_0}$ (2)
$\frac{1}{{{\gamma _{\rm{w}}}}}{\left. {\frac{{\partial u}}{{\partial {\textit{z}}}}} \right|_{{\textit{z}} = h\left( t \right)}} = {i_0}$ (3)

式中,t为时间,h(t)为t时刻渗流锋面距排水面的距离, $\gamma_{\rm w}$ 为水的重度,z为深度。

研究表明,起始水力坡降i0将导致变形稳定后土中超静孔压仍不能完全消散。图1给出了单面排水下渗流锋面至土层底面时最终残留的超静孔压沿深度分布示意图。

1.2 渗流锋面未至土层底面的固结模型

图2(a)所示,应用四元件流变模型描述黏土的流变特性。该流变模型由独立的弹簧及黏壶与Kelvin体串联组成,其中,独立弹簧的弹性模量为 ${E_0}$ ,独立黏壶的黏滞系数为 ${\eta _0}$ ,Kelvin体中弹簧的弹性模量和黏壶的黏滞系数分别为 ${E_1}$ ${\eta _1}$

图2 黏土流变模型 Fig. 2 Rheological models of clays

${\eta _0} \to \infty $ 时,四元件流变模型退化为Merchant三元件流变模型(图2(b));当 ${E_1} \to \infty $ ${\eta _1} \to \infty $ 时,四元件流变模型退化为两元件Maxwell流变模型(图2(c));当 ${E_1} \to \infty $ ${\eta _0} \to \infty $ ${\eta _1} \to \infty $ ${\eta _0} \to \infty $ 时,四元件流变模型退化为线弹性模型(图2(d))。四元件流变模型t时刻竖向有效应力与竖向应变的关系为:

${\varepsilon _{\textit{z}}} = \frac{{{{\sigma '_{\textit{z}}}}}} {E_0} \int_0^t {\frac{{{{\sigma'_{\textit{z}}}}}}{{{\eta _0}}}{\rm{d}}\tau } + \int_0^t {\frac{{{{\sigma '_{\textit{z}}}}}}{{{\eta _1}}}{{\rm{e}}^{ - \frac{{{E_1}\left( {t - \tau } \right)}}{{{\eta _1}}}}}{\rm{d}}\tau } $ (4)

式中, ${\varepsilon _{\textit{z}}}$ 为土体竖向应变, ${\sigma '_{\textit{z}}}$ 为竖向有效应力, $\tau $ 为积分变量,e为自然常数。可得竖向应变 ${\varepsilon _{\textit{z}}}$ $t$ 的偏导数为:

$\frac{{\partial {\varepsilon _{\textit{z}}}}}{{\partial t}} = \frac{1}{{{E_0}}}\frac{{\partial {{\sigma '_{\textit{z}}}}}}{{\partial t}} + \frac{{{{\sigma '_{\textit{z}}}}}}{{{\eta _0}}} + \frac{1}{{{\eta _1}}}\int_0^t {\frac{{\partial {{\sigma '_{\textit{z}}}}}}{{\partial \tau }}{{\rm{e}}^{ - \frac{{{E_1}\left( {t - \tau } \right)}}{{{\eta _1}}}}}{\rm{d}}\tau } $ (5)

1维固结的普遍连续方程为:

$\frac{{\partial v}}{{\partial {\textit{z}}}} = - \frac{{\partial {\varepsilon _{\textit{z}}}}}{{\partial t}}$ (6)

瞬时加载下有效应力原理为:

${\sigma '_{\textit{z}}} = {q_0} - u$ (7)

如果 $t$ 时刻移动边界距离排水面的深度为 $h\left( t \right)$ ,则 ${\textit{z}} > h\left( t \right)$ 处土中超静孔隙水压力将保持初始孔压 ${q_0}$ 不变。 ${\textit{z}} \le h\left( t \right)$ 处土中超静孔压 $u$ 的控制方程可通过将式(1)、(5)及(7)代入式(6)获得。具体为:

$ {c_{\rm{v}}}\frac{{{\partial ^2}u}}{{\partial {{\textit{z}}^2}}} \! =\! \frac{{\partial u}}{{\partial t}} \! -\! \frac{{{E_0}\left( {{q_0}\! -\! u} \right)}}{{{\eta _0}}} \! +\! \frac{{{E_0}}}{{{\eta _1}}}\int_0^t {\frac{{\partial u}}{{\partial \tau }}{{\rm{e}}^{ \! \! -\! \frac{{{E_1}\left( {t \! -\! \tau } \right)}}{{{\eta _1}}}}}{\rm{d}}\tau } , 0 < {\textit{z}} \le h\left( t \right) $ (8)
$u = {q_0},{\textit{z}} \ge h\left( t \right)$ (9)

式(8)中, ${c_{\rm{v}}}$ 为固结系数, ${c_{\rm{v}}} = {{{k_{\rm{v}}}{E_0}} / {{\gamma _{\rm{w}}}}}$

超静孔隙水压力的初始条件为:

$u\left( {{\textit{z}},0} \right) = {q_0}$ (10)

土层顶面边界及移动边界条件可分别表达为:

$u\left( {0,t} \right) = 0,t > 0$ (11)
$\frac{{\partial u}}{{\partial {\textit{z}}}}\left[ {h\left( t \right),t} \right] = {i_0}{\gamma _{\rm{w}}},t > 0$ (12)
$u\left[ {h\left( t \right),t} \right] = {q_0},t > 0$ (13)
1.3 渗流锋面至土层底面的数学模型

如果渗流锋面至土层底面( $h\left( t \right) = H$ ),整个土层内超静孔压均开始消散,原有的移动边界问题转化为固定边界问题,此时考虑起始水力坡降和四元件流变模型的固结控制方程与求解条件分别为:

${c_{\rm{v}}}\frac{{{\partial ^2}u}}{{\partial {{\textit{z}}^2}}} \!=\!\! \frac{{\partial u}}{{\partial t}} \!+\! \frac{{{E_0}}}{{{\eta _0}}}\left( {u \!-\! {q_0}} \right) \!+ \frac{{{E_0}}}{{{\eta _1}}}\int_0^t {\frac{{\partial u}}{{\partial \tau }}{{\rm{e}}^{ \!-\! \frac{{{E_1}\left( {t \!-\! \tau } \right)}}{{{\eta _1}}}}}{\rm{d}}\tau } , 0 < {\textit{z}} \le H$ (14)
$u\left( {0,t} \right) = 0,t > 0$ (15)
$\frac{{\partial u}}{{\partial {\textit{z}}}}\left( {H,t} \right) = {i_0}{\gamma _{\rm{w}}},t > 0$ (16)
2 单面排水下模型的解析解 2.1 渗流锋面未至土层底面时的解析解

由第1节的分析可知,在渗流锋面未至底面前,渗流锋面不断下移,即 $h\left( t \right)$ 随时间不断增大,这将给求解带来诸多困难。为获得移动边界下的解析解,做变量代换 $w\left( {{\textit{z}},t} \right) = u\left( {{\textit{z}},t} \right) - {i_0}{\gamma _{\rm{w}}}{\textit{z}}$ ,则控制方程(8)及(9)分别转变为:

$\begin{aligned} &\frac{{{\partial ^2}w}}{{\partial {{\textit{z}}^2}}} \!\!=\!\! \frac{{\partial w}}{{\partial t}} \!+\! \frac{{{E_0}}}{{{\eta _0}}}\!\left( \! {w \!-\! {q_0} \!+\! {i_0}{\gamma _{\rm{w}}}{\textit{z}}} \!\right) \!+\!\! \frac{{{E_0}}}{{{\eta _1}}}\!\int_0^t \!\!{\frac{{\partial w}}{{\partial \tau }}{{\rm{e}}^{ \!-\! \frac{{{E_1}\left(\! {t \!-\! \tau } \! \right)}} {{{\eta _1}}}}} \!{\rm{d}}\tau }\!,\!\!\!\!\\ &\quad\quad\quad\quad\quad\quad\qquad\!\! {\textit{z}} \le h\left( t \right) \end{aligned}$ (17)
$w\left( {{\textit{z}},t} \right) = {q_0} - {\gamma _{\rm{w}}}{i_0}{\textit{z}},\;{\textit{z}} > h\left( t \right)$ (18)

相应的求解条件为:

$w\left( {0,t} \right) = 0,t > 0$ (19)
$\frac{{\partial w}}{{\partial {\textit{z}}}}\left[ {h\left( t \right),t} \right] = 0,t > 0$ (20)
$w\left( {{\textit{z}},0} \right) = {q_0} - {i_0}{\gamma _{\rm{w}}}{\textit{z}}$ (21)

根据太沙基解的形式,满足上述求解条件的固结解析解可固定表达为:

$w\left( {{\textit{z}},t} \right) = \sum\limits_{m = 1}^\infty {{T_m}\left( t \right)\sin \left[ {{{M{\textit{z}}} / {h\left( t \right)}}} \right]} $ (22)

式中: ${T_m}\left( t \right)$ 为时间 $t$ 的待定函数, $m = 1,2,3,\cdots$ M = $ {{\left( {2m - 1} \right){\text{π}} } / 2}$ 。将式(22)代入式(17)并利用三角函数正交关系得 ${T_m}\left( t \right)$ 需满足的关系式为:

$\begin{aligned}[b] &{c_{\rm{v}}}\!\frac{{{M^2}}}{{{h^2}\!\left(\! t \!\right)}}{T_m}\!\left(\! t\! \right) \!+\! {T'_m}\!\left(\! t \!\right) \!+\!\! \frac{{{E_0}}}{{{\eta _0}}}{T_m}\!\left(\! t \!\right) \!+\!\! \frac{{{E_0}}}{{{\eta _1}}}\!\int_0^t\! \!\left[\! {{{T'_m}}\!\left(\! \tau \!\right)\!{{\rm{e}}^{ \!-\! \frac{{{E_1}\left( \!{t - \tau } \!\right)}}\!{{{\eta _1}}}}}}\! \!\right]{\rm{d}}\tau-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\qquad\!\!\!\!\quad \frac{2}{M}\frac{{{E_0}}}{{{\eta _0}}}\left[ {{q_0} - \frac{{\sin\; M}}{M}{i_0}{\gamma _{\rm{w}}}h\left( t \right)} \right] = 0 \end{aligned}$ (23)

式中, ${T'_m}\left( t \right)$ ${T_m}\left( t \right)$ 的1阶导数。根据初始条件式(21),利用正交关系得初始时刻 ${T_m}\left( 0 \right)$ 为:

${T_m}\left( 0 \right) = \frac{2}{M}\left[ {{q_0} - \frac{{\sin\; M}}{M}{i_0}{\gamma _{\rm{w}}}h\left( t \right)} \right]$ (24)

如果 $L\left[ {{T_m}\left( t \right)} \right]$ ${T_m}\left( t \right)$ 的拉普拉斯变换,令 $L\left[ {{T_m}\left( t \right)} \right] =$ $ {F_m}\left( s \right)$ 。式(23)两侧取拉普拉斯变换并整理得:

${F_m}\left( s \right) = \frac{{\displaystyle \frac{2}{M}\left[ {{q_0} - \displaystyle \frac{{\sin \;M}}{M}{i_0}{\gamma _{\rm{w}}}h\left( t \right)} \right]\left( {1 + \frac{{{E_0}}}{{{\eta _0}s}} + \displaystyle \frac{{{E_0}}}{{{\eta _1}s + {E_1}}}} \right)}}{{{c_{\rm{v}}}\displaystyle \frac{{{M^2}}}{{{h^2}\left( t \right)}} + \displaystyle \frac{{{E_0}}}{{{\eta _0}}} + s + \displaystyle \frac{{{E_0}s}}{{{\eta _1}s + {E_1}}}}}$ (25)

式中, $s$ 为拉普拉斯变换复参量,其形式为 $s = \beta + {\rm{i}}\omega $ ,i为虚数单位。

对式(25)取拉普拉斯逆变换得 ${T_m}\left( t \right)$ 为:

${T_m}\left( t \right) \!= \!\frac{{2{q_0}}}{M}\left(\! {1 \!-\! \frac{{\sin\; M}}{M}RX}\! \right)\left( \!{{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!-\! {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} \!+\! {c_3}} \right)$ (26)

式中, $R = {{{i_0}{\gamma _{\rm{w}}}H} / {{q_0}}}$ ${T_{\rm{v}}} = {{{c_{\rm{v}}}t} / {{H^2}}}$ $X = {{h\left( t \right)} / H}$

$\begin{array}{l}{x_1} = - \dfrac{1}{{2b}}\Big[ {\left( {1 + {a_1} + {a_2} + b{M^2}/{X^2}} \right) + } \Big.\\\quad\quad \left. {\sqrt {{{\left( {1 + {a_1} + {a_2} + b{M^2}/{X^2}} \right)}^2} - 4\left( {{a_1}{a_2} + {a_1}b{M^2}/{X^2}} \right)} } \right],\end{array}$

$\begin{array}{l}{x_2} = - \dfrac{1}{{2b}}\Big[ {\left( {1 + {a_1} + {a_2} + b{M^2}/{X^2}} \right) - } \Big.\\\quad\quad \left. {\sqrt {{{\left( {1 + {a_1} + {a_2} + b{M^2}/{X^2}} \right)}^2} - 4\left( {{a_1}{a_2} + {a_1}b{M^2}/{X^2}} \right)} } \right],\end{array}$

${c_1} = - \displaystyle\frac{{b{x_1} + {a_1}}}{{b{x_1}\left( {{x_1} - {x_2}} \right)}}\frac{{{M^2}}}{{{X^2}}}$ ${c_2} = - \displaystyle\frac{{b{x_2} + {a_1}}}{{b{x_2}\left( {{x_1} - {x_2}} \right)}}\frac{{{M^2}}}{{{X^2}}}$ ${c_3} = {a_2} / $ $ ({a_2} +{b{M^2}} / {{X^2}}),$ ${a_1} = {{{E_1}} / {{E_0}}},$ ${a_2} = {{{\eta _1}} / {{\eta _0}}},$ $b = {{{k_{\rm{v}}}{\eta _1}} / {\left( {{\gamma _{\rm{w}}}{H^2}} \right)}}$

将式(26)代入式(22),得到 $w$ 的解析解为:

$\begin{aligned}[b] &w\left( {{\textit{z}},t} \right) = \sum\limits_{m = 1}^\infty {\frac{{2{q_0}}}{M}\sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}}} \left( {1 - \frac{{\sin \;M}}{M}RX} \right)\times\\ &\quad\quad \quad \left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right) \end{aligned}$ (27)

$t$ 时刻 ${\textit{z}} \le h\left( t \right)$ 区域内超静孔隙水压力 $u$ 为:

$\begin{aligned}[b] & u\left( {{\textit{z}},t} \right) = {i_0}{\gamma _w}{\textit{z}} + \sum\limits_{m = 1}^\infty \left[ {\frac{{2{q_0}}}{M}} \right.\left( {1 - \frac{{\sin M}}{M}RX} \right) \times \\ & \quad\quad \quad \left. {\left( {{c_1}{{\rm{e}}^{{x_1}}}^{{T_{\rm{v}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right)\sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}}} \right] \end{aligned}$ (28)

根据式(13),渗流锋面 ${\textit{z}} = h\left( t \right)$ 处超静孔隙水压力值应等于外荷载 ${q_0}$ 。同时,由式(28)也可得到t时刻 ${\textit{z}} = h\left( t \right)$ 处超静孔压表达式,两者确定的超静孔隙水压力值理应相等,即应满足:

$\begin{aligned}[b] &{q_0} = {i_0}{\gamma _{\rm{w}}}h\left( t \right) + \sum\limits_{m = 1}^\infty \frac{2{q_0}\sin\; M}{M}\left( 1 - \frac{\sin\; M}{M}RX \right) \times\\ &\quad \quad \left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right) \end{aligned} $ (29)

如果将式(29)两侧同时除以外荷载 ${q_0}$ 转化为:

$1 = RX - \sum\limits_{m = 1}^\infty {\frac{2}{M}\left[ {{{\left( { - 1} \right)}^m} + {{RX} / M}} \right]\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right)} $ (30)

式(30)确定了渗流锋面位置 $X$ 与时间因子 ${T_{\rm{v}}}$ 的函数关系。如果已知时间因子 ${T_{\rm{v}}}$ ,则可确定该时刻移动边界所在位置 $X$ ;同样地,如果已知渗流锋面位置 $X$ ,也可求得移动边界至此位置所需的时间 ${T_{\rm{v}}}$

获得孔压解答后,土层的平均固结度Ut定义为:

${U_{\rm{t}}} = \frac{{{q_0}H - \displaystyle\int_0^H {u{\rm{d}}{\textit{z}}} }}{{{q_0}H}} = \frac{{{q_0}h\left( t \right) - \displaystyle\int_0^{h\left( t \right)} {u{\rm{d}}{\textit{z}}} }}{{{q_0}H}}$ (31)

将式(28)代入式(31),得到渗流锋面未至底面时土层平均固结度Ut为:

${U_{\rm{t}}}\! \!= \!\! X \!\left[ \!{1 \!-\! \frac{{RX}}{2} \!-\!\! \sum\limits_{m \!=\! 1}^\infty \! {\frac{2}{{{M^2}}}\!\left(\! {1\! -\! \frac{{\sin \;M}}{M}RX} \!\right)\!\left(\! {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!-\! {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} \!+\! {c_3}} \!\right)} } \!\right]$ (32)

如果渗流锋面始终不能至底面,残留于土中的超静孔压沿深度分布为:

${u_\infty } =\! \left\{ \begin{aligned} &{i_0}{\gamma _{\rm{w}}}{\textit{z}} \!+\! \sum\limits_{m =1}^\infty {\frac{{2{c_3}{q_0}}}{M}\left( {1 - \frac{{\sin \;M}}{M}RX} \right)} \sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}},{\textit{z}} \!<\! h\left( t \right);\\ &{q_0},{\textit{z}} \ge h\left( t \right) \end{aligned} \right.$ (33)

如果渗流锋面至土层底面,超静孔压残留值为:

${u_\infty } = u\left( {{\textit{z}},\infty } \right) = {i_0}{\gamma _{\rm{w}}}{\textit{z}} + \sum\limits_{m = 1}^\infty {\frac{{2{c_3}{q_0}}}{M}\left( {1 - \frac{{\sin\; M}}{M}R} \right)} \sin\; \frac{{M{\textit{z}}}}{H}$ (34)

根据式(34)可求得渗流锋面至土层底面的条件为:

$R + \sum\limits_{m = 1}^\infty {\frac{2}{M}\frac{{{a_2}}}{{{a_2} + b{M^2}}}\left[ {\sin\; M - \frac{R}{M}} \right]} < 1$ (35)

如果取式(35)级数的第1项,该条件为:

$R < {{\left( {4{a_2}{{\rm{{\text{π}} }}^2} + b{{\rm{{\text{π}} }}^4} - 16{a_2}{\rm{{\text{π}} }}} \right)} / {\left( {4{a_2}{{\rm{{\text{π}} }}^2} + b{{\rm{{\text{π}} }}^4} - 32{a_2}} \right)}}$ (36)

式(36)给出了同时考虑起始水力坡降与流变特性后,渗流锋面到达土层底面时参数R应满足的条件,其表达与线弹性本构模型下的表达明显不同。

2.2 渗流锋面至土层底面后的解析解

如果R值满足式(36),渗流锋面能下移至土层底面。当移动边界至土层底面后( $X = 1$ ),仍应用第2.1节中的拉普拉斯变换求得超静孔隙水压力的解为:

$\begin{aligned}[b] &u\left( {{\textit{z}},t} \right) = {i_0}{\gamma _{\rm{w}}}{\textit{z}} + \sum\limits_{m = 1}^\infty {\frac{{2{q_0}}}{M}\left( {1 - \frac{{\sin\; M}}{M}R} \right) \times } \\ &\quad\quad\quad \left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right)\sin\; \frac{{M{\textit{z}}}}{H} \end{aligned}$ (37)

式中, ${x_1}$ ${x_2}$ 可在 $X = 1$ 下由式(26)确定。将式(37)代入式(31),得到渗流锋面至土层底面时按孔压定义的平均固结度 ${U_{\rm{t}}}$ 为:

${U_{\rm{t}}} = 1 - \frac{R}{2} - \sum\limits_{m = 1}^\infty {\frac{2}{{{M^2}}}\left( {1 - \frac{{\sin\; M}}{M}R} \right)\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} + {c_3}} \right)} $ (38)
3 解的分析与验证 3.1 基于四元件流变模型解析解的退化

如果四元件流变模型退化为Merchant流变模型,考虑起始水力坡降的超静孔压计算式(28)、移动边界计算式(30)及平均固结度计算式(32)分别退化为:

$u \!=\! {i_0}{\gamma _{\rm{w}}}{\textit{z}} \!+\! \sum\limits_{m = 1}^\infty \! {\frac{{2{q_0}}}{M}\left(\! {1 \!-\! \frac{{\sin\; M}}{M}RX}\! \right)\left(\! {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!-\! {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}}} \!\right)\sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}}} $ (39)
$ 1 = RX + \sum\limits_{m = 1}^\infty {\frac{2}{M}\left[ {{{\left( { - 1} \right)}^m} - \frac{{RX}}{M}} \right]\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} - {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}}} \right)} $ (40)
${U_{\rm{t}}} \!=\! X\left[\! {1 \!-\! \frac{{RX}}{2} \!- \!\sum\limits_{m = 1}^\infty {\frac{2}{{{M^2}}}\left( {1 \!-\! \frac{{\sin\; M}}{M}RX} \right)\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!-\! {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}}} \right)} }\! \right]$ (41)

式中, ${x_1}$ ${x_2}$ ${c_1}$ ${c_2}$ 可根据式(26)在 ${a_2} = 0$ 下计算得到。

如果四元件流变模型退化为两元件Maxwell流变模型,此时超静孔压计算式(28)、移动边界计算式(30)及平均固结度计算式(32)分别退化为:

$u \!=\! {i_0}{\gamma _{\rm{w}}}{\textit{z}} \!+\! \sum\limits_{m = 1}^\infty {\left[ {\frac{{2{q_0}}}{M}\sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}}\left( {1 \!-\! \frac{{\sin \;M}}{M}RX} \right)\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!+\! {c_3}} \right)} \right]} $ (42)
$ 1 = RX + \sum\limits_{m = 1}^\infty {\frac{2}{M}\left[ {{{\left( { - 1} \right)}^m} - \frac{{RX}}{M}} \right]\left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} + {c_3}} \right)} $ (43)
${U_{\rm{t}}} \!=\! X\left[ {1 \!-\! \frac{{RX}}{2} \!-\! \sum\limits_{m = 1}^\infty {\frac{2}{{{M^2}}}\left( {1 \!-\! \frac{{\sin\; M}}{M}RX} \right) \times \left( {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!+\! {c_3}} \right)} } \right]$ (44)

式中, ${x_1}$ ${c_1}$ ${c_3}$ 可根据式(26)在 ${a_1} \to \infty $ ${a_2} \to \infty $ 下得到, ${x_1} = - \left( {{{{M^2}} / {{X^2}}} \,+\, {{{a_2}} / b}} \right),$ ${c_1} = {{\left( {{{{M^2}} / {{X^2}}}} \right)} / {\left[ {\left( {{{{M^2}} / {{X^2}}}} \right) + \left( {{{{a_2}} / b}} \right)} \right]}},$ ${c_3} = {{\left( {{{{a_2}} / b}} \right)} / {\left[ {\left( {{{{M^2}} / {{X^2}}}} \right) + \left( {{{{a_2}} / b}} \right)} \right]}}{\text{。}}$

如果四元件流变模型转变为线弹性模型,此时超静孔隙水压力的解析解理应退化为Xie等[5]瞬时加载下考虑起始水力坡降的解答。如果渗流锋面未至土层底面,超静孔压计算式(28)、移动边界计算式(30)及平均固结度计算式(32)分别退化为:

$u = {i_0}{\gamma _{\rm{w}}}{\textit{z}} + \sum\limits_{m = 1}^\infty {\frac{{2{q_0}}}{M}\left( {1 - \frac{{\sin\; M}}{M}RX} \right) {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}}} \sin\; \frac{{M{\textit{z}}}}{{h\left( t \right)}}} $ (45)
$1 = RX + \sum\limits_{m = 1}^\infty {\frac{2}{M}\left[ {{{\left( { - 1} \right)}^m} - \frac{{RX}}{M}} \right]{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}}} $ (46)
${U_{\rm{t}}} = X\left[ {1 - \frac{{RX}}{2} - \sum\limits_{m = 1}^\infty {\frac{{2{c_1}}}{{{M^2}}}\left( {1 - \frac{{\sin\; M}}{M}RX} \right){{\rm{e}}^{{x_1}{T_{\rm{v}}}}}} } \right]$ (47)

式中, ${x_1}$ ${c_1}$ 仍可根据式(26)计算确定,得到 ${c_1} = 1$ ${x_1} = - {M^2}$ 。该解恰好是Xie等[5]瞬时加载下考虑起始水力坡降的固结解析解。

3.2 不考虑起始水力坡降时解的退化

如果不考虑存在起始水力坡降,即令 ${i_0} = 0$ $R = 0$ ),式(37)退化为:

$ u\left(\! {{\textit{z}},t} \!\right) \!=\! \sum\limits_{m = 1}^\infty \!{\frac{{2{q_0}\sin\; M}}{M}\!\sin \;\frac{{M{\textit{z}}}}{H}} \!\left(\!\! {{c_1}{{\rm{e}}^{{x_1}{T_{\rm{v}}}}} \!\!-\!\! {c_2}{{\rm{e}}^{{x_2}{T_{\rm{v}}}}} \!\!+\! {c_3}} \!\!\right)$ (48)

式(48)恰好是Xie等[16]瞬时加载下基于四元件流变模型1维固结解析解。以上解的退化说明,现有的瞬时加载下仅考虑起始水力坡降而忽略流变特性的固结解析解和达西定律下考虑四元件流变模型的固结解析解均是本文解析解的特例。

3.3 解析解与差分解的对比

为进一步验证本文方法和解答的合理性,将所得解析解与差分解进行对比。图3(a)为不同R值下,渗流移动边界随时间的变化曲线;图3(b)为不同R值下, ${T_{\rm{v}}} = 0.5$ 时刻孔压沿土层深度分布曲线。其中, ${a_1}=1{\text{,}}\!\!\!{a_2}=0.01{\text{,}}\!\!\!b=5$ ,由图3可知,本文所得解析解与差分解的计算结果接近。综上所述,本文所得解析解可靠。

图3 解析解与差分解对比 Fig. 3 Comparison between analytical solution and differential decomposition

4 实例计算和固结性状分析

由第3节可知,影响固结性状的因素主要有起始水力坡降和黏土流变特性两方面。以下将着重分析这两方面因素对固结性状的影响,计算分析参数见表1

表1 分析计算所用的模型参数 Tab. 1 Adopted parameters in the following analysis

4.1 R对固结性状的影响

起始水力坡降 ${i_0}$ 导致渗流锋面从土层顶面开始逐步下移,即存在着移动边界问题。研究表明,土体在弹性本构关系下,移动边界至土层底面的条件为 $R \le 1$ ,且 $R$ 值越大,移动边界下移速度越慢。如图4所示,在土体变形本构关系为四元件流变模型时,移动边界的下移速度仍会随无量纲变量 $R$ 值的增大而逐渐减慢。如果水力坡降满足式(36),移动边界能下移至底面;如果水力坡降不能满足式(36),移动边界最终不能下移至底面。由此可见,变形本构关系考虑流变特性后R值对移动边界的影响与文献[3]相比并未发生实质性改变,但移动边界能否下移至土层底面的判别条件却发生改变。

图4 R对移动边界位置随时间下移的影响 Fig. 4 Influence of R on the moving boundary

考虑起始水力坡降与四元件流变特性后,土中超静孔隙水压力不能完全消散。如图5(a)所示, $R$ 值越大,某时刻土中残留的超静孔隙水压力越大,土中最终残留的超静孔压也越大。图5(b) ${T_{\rm{v}}} = 0.5$ 时刻超静孔压沿深度分布曲线,同样发现该时刻R=0时土层中超静孔压残留值最小,随R值的增大,超静孔压残留值也会增加。这说明超静孔压的消散速率随R值增大而减慢。

图5 R对超静孔压消散的影响 Fig. 5 Influence of R on the dissipation of excess pore water pressure

图6为不同R下土层平均固结度与时间关系曲线,进一步反映了超静孔压消散性状。 $R = 0$ 时,基于四元件流变模型的土层平均固结度最终能达100,且相同时间因子下其平均固结度最大;随着 $R$ 的增大,相同时间因子下土层平均固结度会逐渐减小,再次证明超静孔隙水压力的消散速率会随 $R$ 值的增大而减慢。需说明的是,随着 $R$ 值的增大,按孔压定义的平均固结度会越来越小,且由于超静孔压最终不能完全消散,土层平均固结度也不能为100%,但超静孔压达到稳定值所需的时间会越来越短。这样的固结性状可从最终超静孔压和平均固结度表达式得到解释。

图6 R对平均固结度Ut的影响 Fig. 6 Influence of R on the average consolidation degree Ut

4.2 不同流变模型对固结性状的影响

由第1.2节可知,三元件模型、两元件模型及线弹性模型分别为四元件流变模型参数 ${E_1}$ ${\eta _0}$ 发生变化的结果。故研究以上流变模型下土层固结性状的差异也即代表了四元件流变模型参数变化对固结性状的影响。

图7为不同流变模型下,移动边界随时间的下移曲线。由图7可知,不同流变模型下移动边界随时间的下移曲线基本重合,这说明流变模型参数对超静孔压前期的消散过程基本无影响。

图7 不同流度型下XTv曲线 Fig. 7 Influence of different models on XTv

该固结性状可从 ${{\textit{z}} / H} = 0.5$ 处超静孔压随时间消散过程曲线进一步得到验证(图8)。不同模型下该处超静孔隙水压力消散曲线在固结初期基本重合,移动边界随时间的下移曲线自然也相差无几。

图8 不同流变模型下z/H = 0.5处u/q0Tv曲线 Fig. 8 Influence of different models on u/q0Tv at z/H = 0.5

随着超静孔压的消散,在固结后期不同模型下超静孔压随时间消散曲线虽略有差异,但差异仍很小。故不同流变模型对孔压消散影响甚微导致不同流变模型下平均固结度随时间变化曲线差异也很微小,如图9所示。

图9 不同流变模型下平均固结度变化 Fig. 9 Changes of different models on the average degree of consolidation

5 结 论

考虑黏性土中存在的起始水力坡降及其流变特性,基于传统太沙基1维固结理论重新推导建立了1维固结控制方程并得到其解析解,结论如下:

1)给出了基于起始水力坡降和四元件流变模型的软黏土1维固结解析解。该解答为同时考虑起始水力坡降和流变特性的实际软黏土固结计算提供了可供参考的计算方法。

2)本文解析解与数值解对比相差无几,验证了本文解析方法的可靠性。本文解可退化为考虑起始水力坡降的线弹性固结解析解,也可退化为达西定律下四元件流变模型的软黏土1维固结解析解。这2种情况下的解析解均是本文解析解的特例。

3)考虑流变特性后,与线弹性模型下结果相比,起始水力坡降对软黏土流变固结性状的影响并未发生改变,但渗流锋面至底面的判别条件发生改变。考虑起始水力坡降后,尤其是固结初期,不同流变模型对超静孔压消散过程的影响很小。

参考文献
[1]
Miller R J,Low P F. Threshold gradient for water flow in clay systems[J]. Soil Science Society of America Journal, 1963, 27(6): 605-609. DOI:10.2136/sssaj1963.03615995002700060013x
[2]
Pascal F,Pascal H,Murray D W. Consolidation with threshold gradients[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(3): 247-261. DOI:10.1002/(ISSN)1096-9853
[3]
Liu Ciqun. Approximate solutions for one-dimensional consolidation with a threshold gradient[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(3): 107-109. [刘慈群. 有起始比降固结问题的近似解[J]. 岩土工程学报, 1982, 4(3): 107-109. DOI:10.3321/j.issn:1000-4548.1982.03.010]
[4]
Liu Zhongyu,Zhang Tianhang,Ma Chongwu. Effect of initial hydraulic gradient on one-dimensional consolidation of saturated clays[J]. Rock and Soil Mechanics, 2007, 28(3): 467-470. [刘忠玉,张天航,马崇武. 起始水力梯度对饱和黏土一维固结的影响[J]. 岩土力学, 2007, 28(3): 467-470. DOI:10.3969/j.issn.1000-7598.2007.03.007]
[5]
Xie K H,Wang K,Wang Y L,et al. Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient[J]. Computers and Geotechnics, 2010, 37(4): 487-493. DOI:10.1016/j.compgeo.2010.02.001
[6]
Zhou Y,Bu W K,Lu M M. One-dimensional consolidation with a threshold gradient:A Stefan problem with rate-dependent latent heat[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(16): 2825-2832.
[7]
Wang Kun,Xie Kanghe,Liu Xingwang,et al. Solution for one-dimensional consolidation with threshold gradient subjected to non-uniformly distributed initial pore water pressure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1419-1424. [王坤,谢康和,刘兴旺,等. 初始孔压非均布考虑起始比降的一维固结解[J]. 岩土工程学报, 2011, 33(9): 1419-1424.]
[8]
Li Chuanxun,Wang Kun. Analysis of one-dimensional nonlinear consolidation for soft soils with threshold gradient[J]. Journal of Jiangsu University (Natural Science Edition), 2014, 35(6): 732-737. [李传勋,王坤. 考虑起始水力坡降的软土一维非线性固结分析[J]. 江苏大学学报 (自然科学版), 2014, 35(6): 732-737.]
[9]
Huang Jieqing,Xie Xinyu,Wang Wenjun,et al. Study on one-dimensional nonlinear consolidation behavior for saturated soils with threshold gradient[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 355-363. [黄杰卿,谢新宇,王文军,等. 考虑起始比降的饱和土体一维复杂非线性固结研究[J]. 岩土工程学报, 2013, 35(2): 355-363.]
[10]
Li Chuanxun,Dong Xingquan,Jin Dandan,et al. Nonlinear large-strain consolidation analysis of soft clay considering threshold hydraulic gradient[J]. Rock and Soil Mechanics, 2017, 38(2): 377-384. [李传勋,董兴泉,金丹丹,等. 考虑起始水力坡降的软土大变形非线性固结分析[J]. 岩土力学, 2017, 38(2): 377-384.]
[11]
Taylor D W,Merchant W. A theory of clay consolidation accounting for secondary compression[J]. Journal of Mathematics and Physics, 1940, 19(1/2/3/4): 167-185.
[12]
Xia Jun,Mei Guoxiong,Mei Ling,et al. Biot’s consolidation finite layer analysis of viscoelastic soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 437-441. [夏君,梅国雄,梅岭,等. 考虑固结的黏弹性地基的有限层法[J]. 岩土工程学报, 2009, 31(3): 437-441. DOI:10.3321/j.issn:1000-4548.2009.03.021]
[13]
Chen Xiaoping,Bai Shiwei. Research on creep consolidation characteristics and calculation model of soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 728-734. [陈晓平,白世伟. 软土蠕变–固结特性及计算模型研究[J]. 岩石力学与工程学报, 2003, 22(5): 728-734. DOI:10.3321/j.issn:1000-6915.2003.05.008]
[14]
Yin J H,Graham J. Elastic visco-plastic modelling of one-dimensional consolidation[J]. Geotechnique, 1996, 46(3): 515-527. DOI:10.1680/geot.1996.46.3.515
[15]
Bjerrum L. Engineering geology of norwegian normally-consolidated marine clays as related to settlements of buildings[J]. Geotechnique, 1967, 17(2): 63-117.
[16]
Xie K H,Xie X Y,Li X B. Analytical theory for one-dimensional consolidation of clayey soils exhibiting rheological characteristics under time-dependent loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(14): 1833-1855. DOI:10.1002/nag.v32:14
[17]
Li Xibin,Xie Kanghe,Chen Fuquan. One dimensional consolidation and permeability tests considering stress history and rheological characteristic of soft soils[J]. Journal of Hydraulic Engineering, 2013, 44(1): 18-25. [李西斌,谢康和,陈福全. 考虑软土流变特性和应力历史的一维固结与渗透试验[J]. 水利学报, 2013, 44(1): 18-25. DOI:10.3969/j.issn.0559-9350.2013.01.005]