工程科学与技术   2018, Vol. 50 Issue (2): 190-196

1. 重庆大学 汽车工程学院，重庆 400044;
2. 重庆大学 机械传动国家重点实验室，重庆 400044

Motion Parameters Optimization of Shearer Based on Double-drum Optimization Model
LIU Yonggang1,2, PENG Jingyu1, QIN Datong1,2, HU Minghui1,2, HOU Liliang1
1. College of Automotive Eng.,Chongqing Univ.,Chongqing 400044,China;
2. State Key Lab. of Mechanical Transmission,Chongqing Univ.,Chongqing 400044,China
Abstract: The traditional single-drum optimization model,which only contains the haulage speed and the rotational speed,has been widely used in motion parameter optimization of shearer in academic area.However,the single-drum optimization model cannot totally suits the stress difference between the left drum and the right drum,which leads to the optimized results are not completely applicable to the double-drum shearer.For this sake,a double-drum shearer was taken as the research subject.The double-drum optimization model was proposed whose design variables were the rotational speed of left drum,the rotational speed of right drum and the haulage speed.The motion parameters of the double-drum shearer were optimized by genetic algorithm (GA).The comparison results showed the double-drum shearer with the optimal motion parameters has better cutting performance than that of the industrial application parameters.Further comparison between the optimization results of the double-drum optimization model and that of the single-drum optimization model showed an enhancement of 16.42% in the cutting performance.Thus,the double-drum optimization model is more effective than the traditional single-drum optimization model.
Key words: shearer    double-drum model    parameter optimization    cutting performance

 图1 采煤机运行状态示意图 Fig. 1 Working state diagram of shearer

1 双滚筒优化模型建立 1.1 设计变量确定

 ${ X} = {[{x_1}\;{x_2}\;{x_3}]^{ T}} = {[v\;{n_{ L}}\;{n_{ R}}]^{ T}}$ (1)

1.2 目标函数确定 1.2.1 分目标函数选择

1）总切削图面积

 图2 顺序式截齿切削图 Fig. 2 Arrangement of the cutting patterns and sequential picks

 \begin{aligned}{A_{ m\_all}} & = {A_{ m\_L}} + {A_{ m\_R}}=\\& \frac{{{{(1\;000v{\text{π}} D\tan \;\delta )}^2}\tan \;\varphi }}{{{m^2}{{({\text{π}} D{n_{ L}}\tan \;\delta + 1\;000v\tan \;\varphi )}^2}}}\left( {1 + \frac{{1\;000v}}{{{\text{π}} D{n_{ L}}\tan \;\delta }}} \right)+\\ & \frac{{{{(1\;000v{\text{π}} D\tan \;\delta )}^2}\tan \;\varphi }}{{{m^2}{{({\text{π}} D{n_{ R}}\tan \;\delta + 1\;000v\tan \;\varphi )}^2}}}\left( {1 + \frac{{1\;000v}}{{{\text{π}} D{n_{ R}}\tan \;\delta }}} \right)\end{aligned} (2)

2）总截割比能耗

 \begin{aligned} {H_{ w\_all}} & = {H_{ w\_L}} + {H_{ w\_R}}=\\ & \frac{{K{A_{{T}}}{n_{ L}}m}}{{{n_{ L}}mb + 1\;000v\tan \;\varphi }} \times {10^{ - 3}}+\\& \frac{{K{A_{{B}}}{n_{ R}}m}}{{{n_{ R}}mb + 1\;000v\tan \;\varphi }} \times {10^{ - 3}}\end{aligned} (3)

3）整机生产率

 $Q = {{2}}kLB\rho v$ (4)

1.2.2 总目标函数

 $\begin{array}{l}\min F(X) = {K_{{1}}}[ - {A_{ m\_all}}(X)] + {K_{{2}}}{H_{ w\_all}}(X) + {K_{{3}}}[ - Q(X)]\end{array}$ (5)

1.3 截割约束条件

1）装煤性能约束

 ${Q_{ s\_L}} > {Q_{ t}}$ (6)
 ${Q_{ s\_R}} > {Q_{ t}}$ (7)

2）牵引力约束

 ${F_{ q}} \ge {F_{ qs}}$ (8)

3）截割力约束

 $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{T_{{L}}} = 0.5N{\bar R_{ t\_L}}(D/2) \le {T_{\max }}\quad\;$ (9)
 ${T_{{R}}} = 0.5N{\bar R_{ t\_R}}(D/2) \le {T_{\max }}$ (10)

 \left\{ {\begin{aligned}&{{n_{{L}}}>4.76v},\\&{{n_{{R}}}>4.76v},\\&{\bar A\frac{v}{n} \le 40.1},\\&{{A_{{T}}}\frac{v}{{{n_{{L}}}}} \le 29},\\&{{A_{{B}}}\frac{v}{{{n_{{R}}}}} \le 29}\text{。}\end{aligned}} \right.

2 优化结果分析

2.1 牵引速度优化结果分析

 图3 最优牵引速度 Fig. 3 Optimal haulage speed

2.2 滚筒转速优化结果分析

 图4 最优左滚筒转速 Fig. 4 Optimal rotational speed of left drum

 图5 最优右滚筒转速 Fig. 5 Optimal rotational speed of right drum

2.3 截割性能优化结果分析

 图6 截割性能对比 Fig. 6 Comparison of the cutting performances

3 单、双滚筒模型优化结果对比分析 3.1 单滚筒优化模型优化结果

 ${ X} = {[{x_1}\;{x_2}]^{ T}} = {[v\;n]^{ T}}$ (11)
 $\begin{array}{l}\min F({ X}) = {K_{{1}}}[ - A({ X})] + {K_{{2}}}H({ X}) + {K_{{3}}}[ - Q({ X})]\!\!\!\!\!\!\!\!\!\!\end{array}$ (12)

 图7 单滚筒模型运动参数优化结果 Fig. 7 Optimization results of the single-drum optimization model

3.2 牵引速度优化结果对比分析

1）两侧阻抗相同。保持两侧截割阻抗同步变化（如图7虚线所示工况），分析牵引速度与两侧截割阻抗的变化关系，如图8中“★”线所示。

2）两侧阻抗不同。保持一侧截割阻抗不变（本文选择固定下层截割阻抗 ${A_{ B}}$ 不变，以 ${A_{ B}} = 0$ ，160，320 kN/m为例），分析牵引速度与另一侧截割阻抗的变化关系，如图8中细实线所示。

 图8 牵引速度优化结果对比 Fig. 8 Comparison of the haulage speed

3.3 单侧滚筒转速对比分析

1）两侧阻抗相同。保持两侧截割阻抗同步变化（如图4虚线所示工况），分析左滚筒转速与两侧截割阻抗的变化关系，如图9中“★”线所示。

2）两侧阻抗不同。保持下层截割阻抗 ${A_{ B}}$ 不变，以 ${A_{ B}} = 0$ 、160、320 kN/m为例，分析左滚筒转速与上层截割阻抗的变化关系，如图9中细实线所示。

 图9 滚筒转速优化结果对比 Fig. 9 Comparison of optimization results of the rotational speed of the drum

3.4 截割性能优化结果对比

 $p = \frac{{v_{ D} - v_{ S}}}{v_{ S}} \times 100 \text{\%}$ (13)

 图10 总切削图面积优化结果对比 Fig. 10 Comparison of the total cutting area

 图11 总截割比能耗优化结果对比 Fig. 11 Comparison of the total specific energy of cutting

 图12 生产率优化结果对比 Fig. 12 Comparison of the productivity

4 结　论

1）针对单滚筒优化模型的适用性问题，在单滚筒模型的基础上增加一个滚筒转速，建立了双滚筒运动参数优化模型。

2）利用GA算法对双滚筒采煤机运动参数进行了优化，并将结果与传统参数进行了对比，对比结果表明采煤机在最优参数下的截割性能更优。

3）对单、双滚筒优化模型的优化结果进行了比较，结果显示双滚筒模型的综合截割性能较单滚筒模型提高了16.35%，表明双滚筒优化模型更符合双滚筒采煤机实际截割情况，双滚筒采煤机的截割性能有较大的提升，为实现双滚筒采煤机高效、高质截割奠定了良好的基础。

 [1] Qian Minggao. On sustainable coal mining in China[J]. Journal of China Coal Society, 2010, 35(4): 529-534. [钱鸣高. 煤炭的科学开采[J]. 煤炭学报, 2010, 35(4): 529-534.] [2] Wang G F, Ren H W. New development of sets equipment technologies for coal mine longwall face in China[J]. Journal of Coal Science and Engineering (China), 2012, 18(1): 1-9. DOI:10.1007/s12404-012-0101-4 [3] Bakhtavar E, Shahriar K. Selection of a practicable shearer loader based on mechanical properties of coal for Parvadeh 1 mine[J]. Archives of Mining Sciences, 2013, 58(1): 145-157. [4] Ma Zhenglan, Du Changlong, Liu Songyong. Study on variable speed cutting of shearer for high lump coal rate[J]. Journal of China Coal Society, 2009(12): 91-92. [马正兰, 杜长龙, 刘送永. 高块煤率采煤机变速截割的理论研究[J]. 煤炭工程, 2009(12): 91-92. DOI:10.3969/j.issn.1671-0959.2009.12.033] [5] Qin Datong, Wang Zhen, Hu Minghui. Dynamic matching of optimal drum movement parameters of shearer based on multi-objective optimization[J]. Journal of China Coal Society, 2015, 40(s2): 532-538. [秦大同, 王镇, 胡明辉. 基于多目标优化的采煤机滚筒最优运动参数的动态匹配[J]. 煤炭学报, 2015, 40(s2): 532-538.] [6] Li Xiaohuo, Gao Jian. Effect of kinematics parameters of shearer on lump coal production[J]. Journal of China Coal Society, 2009(9): 1268-1270. [李晓豁, 高健. 采煤机运动参数对块煤产量的影响[J]. 煤炭学报, 2009(9): 1268-1270.] [7] Chen Xuluo, Chang Longdu, Song Yongliu. Influence of drum motion parameters on shearer cutting properties[J]. Indonesian Journal of Electrical Engineering, 2014(1): 520-529. [8] Cheng Xue, Du Changlong, Li Jianping. Analysis of shearer drum and lump coal percentage[J]. Mine Machinery, 2008, 29(12): 76-77. [程雪, 杜长龙, 李建平. 采煤机滚筒与块煤率的关系分析[J]. 煤矿机械, 2008, 29(12): 76-77. DOI:10.3969/j.issn.1003-0794.2008.12.033] [9] Liu Songyong.Research on cutting performance of shearer drum and cutting system dynamics[D].Beijing:China University of Mining & Technology,2009. 刘送永.采煤机滚筒截割性能及截割系统动力学研究[D].北京:中国矿业大学,2009. [10] 刘春生,于信伟,任昌玉.滚筒式采煤机工作机构[M].哈尔滨:哈尔滨工程大学出版社,2010. [11] Ma Zhenglan.Study on key technology of shearer with variable speed cutting[D].Beijing:China University of Mining and Technology,2009. 马正兰.变速截割采煤机关键技术研究[D].北京: 中国矿业大学,2009.