工程科学与技术   2017, Vol. 49 Issue (5): 164-170
一类非匹配不确定纯反馈非线性系统新型变幂次趋近律滑模控制
佃松宜, 李银锋, 蒲明, 陈琳, 何泉林     
四川大学 电气信息学院,四川 成都 610065
基金项目: 中央高校基本科研业务费专项资金资助(20826041A4133)
摘要: 针对以熔化极气体保护焊(gas metal arc welding,GMAW)为代表的一类非匹配不确定纯反馈非线性系统的输出问题,提出一种基于变幂次趋近律的滑模控制方法。首先,采用滑模微分器得到含系统非匹配不确定性干扰的输出一阶导数。得益于终端滑模有限时间稳定的性能,该方法具有估计精度高、估计误差收敛速度快的优点。然后,提出一种新型的变幂次趋近律,并证明在相同增益下,其趋近速度均快于现有各种趋近律,且具有自适应调节趋近速度的能力,既保证了在全局范围内系统轨迹有限时间趋近滑模面,又避免了在滑模面附近出现抖振。最后,采用变幂次趋近律滑模变结构控制方法和传统趋近律滑模变结构控制方法分别对带有非匹配干扰的GMAW中的弧长进行控制仿真,并对比弧长跟踪效果,分析稳态误差。结果表明,变幂次趋近律滑模变结构方法能够有效的提高系统收敛的快速性,滑模控制方法对于非匹配不确定非线性系具有强鲁棒性。
关键词: 非匹配    不确定    纯反馈    滑模    
New Exponential Reaching Law Sliding Mode Control for the Pure Feedback Nonlinear Systems with Mismatched Uncertainties
DIAN Songyi, LI Yinfeng, PU Ming, CHEN Lin, HE Quanlin     
School of Electrical Eng. and Info., Sichuan Univ., Chengdu 610065, China
Abstract: In order to solve the output problem of a class of non-matching uncertain nonlinear systems represented by gas metal arc welding (GMAW),a sliding mode control method based on variable power law was proposed.Firstly,the first derivative of the output of system with non-matching uncertainty was obtained by using the sliding mode differentiator.Since the terminal sliding mode is stable in a finite time interval,the method has high estimation precision and the advantage that the speed the estimation error convergence is fast.Then,the paper put forward a new kind of exponential reaching law,and proved that under the same gain,the approach speed was faster than the existing various kinds of reaching laws.Furthermore,the approach speed of the proposed reaching law can be adaptively controlled,which not only ensured the system trajectory in the global scope to reach the sliding surface in a limited time,but also avoided the chattering around the sliding surface.Finally,the simulation results of sliding mode control method with the variable power reaching law and ones with traditional reaching laws are compared in controlling the arc length of non-interfered GMAW.Then,the tracking effect of arc length were compared and the steady-state errors were analyzed.The results showed that the sliding mode method with the variable power reaching law and variable structure can effectively improve the fastness of the system convergence.In conclusion,the sliding mode control method had strong robustness to the non-matching uncertain nonlinear system.
Key words: mismatched    uncertainties    pure feedback    sliding mode    

熔化极气体保护焊(GMAW)具有熔滴过渡轴向性好,焊接过程无飞溅,焊缝成形美观,焊接变形小,适用于全位置焊接、铝合金焊接等优点,近年来被广泛应用于工业生产中[1]。在GMAW中,焊接电弧的稳定对于保证焊接质量起主要作用,因此控制焊接电弧弧长的稳定性,对保证焊接产品的质量和提高劳动生产率都有重要的意义[2]。研究者们对电弧提出了很多有效的控制方法,其中有反馈线性化控制法、自适应控制法等等[34],但是这些方法所基于的模型与实际的模型有偏差,存在建模不确定性,而且在焊接过程中存在外界环境干扰。如果忽略干扰和建模不确定性,就会影响电弧的控制精度。

为了实现GMAW电流与弧长的精确控制,研究与其模型具有相似结构的一类非匹配不确定纯反馈非线性系统的控制。纯反馈非线性系统是具有比严格反馈非线性系统更一般性的下三角非线性系统,对于纯反馈非线性系统的研究从未间断,也取得了许多成果[58],但是对于不确定性纯反馈非线性系统的的研究却并不多见。

滑模变结构控制方法是一种鲁棒的控制方法,能够有效处理一类不确定系统的控制问题,滑模控制系统在滑模运动阶段对系统不确定性具有不变性[9]。目前,如何快速到达滑动模态并同时消除滑模运动阶段的抖振仍是目前研究的热点。其中趋近律方法是典型的方法之一。高为炳等[10]详细阐述了抖振产生的原因,并提出等速趋近律、指数趋近律、幂次趋近律。但是等速趋近律,指数趋近律存在严重抖振;幂次趋近律虽然消除了抖振,可是在远离滑模面时趋近速度小。Yu等[11]提出一种快速幂次趋近律,综合了指数趋近律,和幂次趋近律的优点。该方法消除了抖振,加快了远离滑模面时的趋近速度,但是滑模面附近的趋近速度还有待改善。梅红等[12]提出一种全局快速收敛的双幂次趋近律,进一步加快了到达滑模面的速度,但是其趋近速度自适应调节能力差。李鹏等[13]分析指出,快速幂次趋近律和双幂次趋近律都具有二阶滑模特性,并且推导了受扰时的稳态误差界。张合新等[14]分析了双幂次趋近律的收敛特性,存在干扰时可以有限时间收敛到稳态误差界内。李鹏[13]和张合新[14]等只是对现有趋近律做了稳态性能和鲁棒性能分析,并没对趋近律做实质性的改进。张瑶等[15]提出了多幂次趋近律,进一步加快了系统的收敛速度,然而不足处在于,该多幂次趋近律在原点处是不连续的,导致系统在原点出现盲区。

在上述趋近律研究的基础上,作者提出变幂次趋近律,变幂次趋近律在滑模趋近阶段具有更好的动态性能,即加快时间收敛特性,另外还保证了系统在原点的连续性。针对一类非匹配不确定纯反馈系统运用基于变幂次趋近律的滑模变结构控制方法,在考虑由微分器给滑模面上带来的误差情况下,应用滑模微分器,快速精确的估计状态导数,分析系统的收敛区域。最后将该方法应用于GMAW中的弧长控制。仿真验证该方法可以有效的提高电弧跟踪的响应速度和精度。

1 问题描述 1.1 电流模型

为了稳定焊接过程,必须严格控制稳定焊接电流,通常加一个电流内环控制器[16]

$I = \frac{1}{{\tau s + 1}}{I_{\rm{g}}}$ (1)

其中,I为实际焊接电流,τ为时间常数,s为复数,Ig为参考电流。对应的时域微分方程为:

$\dot I = - \frac{1}{\tau }I + \frac{1}{\tau }{I_{\rm{g}}}$ (2)

图1所示,干伸长度ls是指从导电嘴与焊丝的接触点到焊丝熔化点的距离,干伸长的变化率与送丝速度ve、焊丝熔化速度vm以及导电嘴到工件距离的变化率有关。导电嘴到工件的距离为lct,导电嘴到工件距离的变化率为ict。则干伸长的变化率为:

${\dot l_{\rm{s}}} = {v_{\rm{e}}} - {v_{\rm{m}}} + {\dot l_{{\rm{ct}}}}$ (3)
图1 焊接过程简化模型图 Fig. 1 Simplified model of the welding process

忽略熔点的半径则有:

${l_{{\rm{ct}}}} = {l_{\rm{s}}} + {l_{{\rm{arc}}}}$ (4)

式(3)和(4)联立可得弧长变化率模型为:

${\dot l_{{\rm{arc}}}} = {v_{\rm{m}}} - {v_{\rm{e}}}$ (5)

由文献[16]可得熔化速度和焊接电流关系的数学模型为:

${v_{\rm{m}}} = {m_{\rm{1}}}I + {m_{\rm{2}}}{l_{\rm{s}}}{I^2}$ (6)

其中,m1m2为熔化系数。

由式(4)、(5)和(6)可得到焊接电流与弧长关系的数学模型为:

${\dot l_{{\rm{arc}}}} = {m_1}I + {m_2}{I^2}\left( {{l_{{\rm{ct}}}} - {l_{{\rm{arc}}}}} \right) - {v_{\rm{e}}}$ (7)

综上,在考虑未建模动态、建模不确定以及外界环境干扰的情况下,结合式(2)和(7)可得GMAW系统电流与弧长的状态空间表达式为:

$\left\{ \begin{aligned}{{\dot x}_1} = &{m_1}{x_2} + {m_2}{x_2}^2\left( {{l_{{\rm{ct}}}} - {x_1}} \right) - {v_{\rm{e}}} + {d_1}\left( t \right),\\{{\dot x}_2} = &- \frac{1}{\tau }{x_2} + \frac{1}{\tau }u + {d_2}\left( t \right)\end{aligned} \right.$ (8)

其中,Ig=ularc=x1I=x2d1t)与d2t)为系统的不确定性干扰。

考虑到一般性,研究一类包含GMAW系统模型的非匹配不确定纯反馈系统如下:

$\left\{ \begin{aligned}&{{\dot x}_1} = f\left( {{x_1},{x_2}} \right) + {d_1}\left( t \right),\\&{{\dot x}_2} = g\left( {{x_1},{x_2}} \right) + l\left( {{x_1},{x_2}} \right)u + {d_2}\left( t \right),\\&y = {x_1}\end{aligned} \right.$ (9)

其中, $g\left( {{x_1},{x_2}} \right)$ $U \times J \to {\mathbb{R}}$ $f\left( {{x_1},{x_2}} \right)$ $U \times J \to {\mathbb{R}}$ $l\left( {{x_1},{x_2}} \right) \ne 0$

设计控制器u使系统的控制输出x1跟踪一个光滑有界参考信号xd[17]。为了实现控制目标,对以上系统作如下假设:

假设1   $f\left( {{x_1},{x_2}} \right)$ 为2阶可微有界函数,其偏导数 $\displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}} \ne 0$ $\displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}$ 为已知有界。

假设2  复合干扰d1t)和复合干扰d2t)的界均存在且已知,这里记作 $\left| {{d_1}\left( t \right)} \right| < {\eta _1},{\eta _1} > 0$ $\left| {{d_2}\left( t \right)} \right| < {\eta _2},{\eta _2} > 0$ ,其中,η1η2为已知界。复合干扰d1t)的1阶导数也是已知有界,记作 $\left| {{{\dot d}_1}\left( t \right)} \right| < {\eta _{{{d}}1}},{\eta _{{{d}}1}} > 0$ ,其中,ηd1为已知界。

1.2 控制器的设计

定义误差变量 $e = {x_{\rm{d}}} - {x_1}$ 则:

$\dot e = {\dot x_{\rm{d}}} - {\dot x_1}$ (10)

设计滑模面:

$\beta = ke + \dot e$ (11)

其中,k>0。

对滑模面式(11)求导,结合式(9)可得:

$\dot \beta = k\dot e + {\ddot x_{\rm{d}}} - \left( {\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_1}}}{{\dot x}_1} + \frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}{{\dot x}_2} + {{\dot d}_1}\left( t \right)} \right)$ (12)

结合式(9),式(12)可转化为:

$\begin{aligned}[b]\dot \beta = &k\dot e + {{\ddot x}_{\rm{d}}} - \frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_1}}}{{\dot x}_1} - {\rm{ }}\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}} \times \\&\left( {g\left( {{x_1},{x_2}} \right) + l\left( {{x_1},{x_2}} \right)u + {d_2}\left( t \right)} \right) - {{\dot d}_1}\left( t \right)\end{aligned}$ (13)

设计变幂次趋近律:

$\dot \beta = \varXi \left( \beta \right) = \left\{ {\begin{array}{*{20}{c}}{\!\!\!\! - c{{\left| \beta \right|}^{{\gamma _1}\left| \beta \right|}}{\mathop{\rm sgn}} \left( \beta \right),\left| \beta \right| \ge 1;}\\[8pt]{\!\!\!\!\!\!\!\!\!\! - c{{\left| \beta \right|}^{{\gamma _2}}}{\mathop{\rm sgn}} \left( \beta \right),\left| \beta \right| < 1}\end{array}} \right.$ (14)

其中,c>0,0< $ \gamma $ 2<1, $ \gamma $ 1>1。

定 理  当总增益相同,即c=c1+c2时,对于变幂次趋近律式(14), $ \beta $ 能在任意初始位置 $ \beta_0 $ 具有比双幂次趋近律 $\dot \beta = - {c_1}{\left| \beta \right|^{{\gamma _1}}}{\mathop{\rm sgn}} \left( \beta \right) - {c_2}{\left| \beta \right|^{{\gamma _2}}}{\mathop{\rm sgn}} \left( \beta \right)$ [12]更快的速度在有限时间内收敛到0。其中,c1>0,c2>0。

证明:取李雅普诺夫函数[18]

$V\left( \beta \right) = \frac{1}{2}{\beta ^2}$ (15)

则对式(15)求导可得:

$\dot V\left( \beta \right) = \beta \dot \beta $ (16)

将式(14)代入式(16)可得:

$\begin{aligned}\dot V\left( \beta \right) = &\beta \varXi \left( \beta \right) = \\&\left\{ {\begin{array}{*{20}{c}}{\!\!\!\!\! - \left( {{c_1} + {c_2}} \right)\beta {{\left| \beta \right|}^{{\gamma _1}\left| \beta \right|}}{\mathop{\rm sgn}} \left( \beta \right),{\rm{ }}\left| \beta \right| > 1;}\\{\!\!\!\!\!\!\!\! - \left( {{c_1} + {c_2}} \right)\beta {{\left| \beta \right|}^{{\gamma _2}}}{\mathop{\rm sgn}} \left( \beta \right),{\rm{ }}\left| \beta \right| < 1}\end{array}} \right. = \\&\left\{ {\begin{array}{*{20}{c}}{ \!\!\!\!\! - \left( {{c_1} + {c_2}} \right)\left| \beta \right|{{\left| \beta \right|}^{{\gamma _1}\left| \beta \right|}},{\rm{ }}\left| \beta \right| > 1};\\{\!\!\!\!\!\!\!\! - \left( {{c_1} + {c_2}} \right)\left| \beta \right|{{\left| \beta \right|}^{{\gamma _2}}},{\rm{ }}\left| \beta \right| < 1}\end{array}} \right.\end{aligned}$ (17)

$ \beta $ ≠0时,易知 $ - \left( {{c_1} \!+\! {c_2}} \right)\left| \beta \right|{\left| \beta \right|^{{\gamma _1}\left| \beta \right|}} \!<\! 0$ $ - \left( {{c_1} \!+\! {c_2}} \right)\left| \beta \right|{\left| \beta \right|^{{\gamma _2}}} \!<\! 0$ ,即 $\dot V\left( \beta \right) < 0$ ;当 $ \beta $ =0时, $ - \left( {{c_1} + {c_2}} \right)\left| \beta \right|{\left| \beta \right|^{{\gamma _2}}} = 0$ $\dot V\left( \beta \right) = 0$

所以 $\dot V\left( \beta \right)$ 为负定,从而可以证明 $ \beta $ 在所提出变幂次趋近律的作用下,是渐近稳定的。在此结论基础上,进一步证明式(14)所提出的变幂次趋近律在每一点的趋近速度均快于文献[12]中的双幂次趋近律 $\dot \beta = - {c_1}{\beta ^{{\gamma _1}}}{\mathop{\rm sgn}} \left( \beta \right) - {c_2}{\beta ^{{\gamma _2}}}{\mathop{\rm sgn}} \left( \beta \right)$ 。为此,对于变幂次趋近律,定义 $ \beta $ 从初始点 $ \beta $ (0)收敛到0的时间为 $ t_\beta$ ,收敛到与原点距离为1的时间为 $ {{{t}}_{{\beta 1}}}$ ,从1收敛到0的时间为 ${{{t}}_{{\beta 2}}} $ 。这里,假设初始位置 $ \beta $ (0)与原点的距离大于1。

$\begin{aligned}[b]{t_{\beta 1}} = &\int_{{\mathop{\rm sgn}} \left( \beta \right)}^{\beta \left( 0 \right)} {\frac{{{\rm{d}}\beta }}{{\left( {{c_1} + {c_2}} \right){{\left| \beta \right|}^{{\gamma _1}\left| \beta \right|}}{\mathop{\rm sgn}} \left( \beta \right)}}}= \\ &\left\{ {\begin{array}{*{20}{c}}{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \int_1^{\beta \left( 0 \right)} {\displaystyle\frac{{{\rm{d}}\beta }}{{\left( {{c_1} + {c_2}} \right){\beta ^{{\gamma _1}\beta }}}}} ,{\rm{ }}\beta > 1;}\\[8pt]{\!\!\!\! \int_{ - 1}^{\beta \left( 0 \right)} {\displaystyle\frac{{{\rm{d}}\beta }}{{ - \left( {{c_1} + {c_2}} \right){{\left| \beta \right|}^{{\gamma _1}\left| \beta \right|}}}}} ,\beta < - 1}\end{array}} \right.=\\ &\int_1^{\left| {\beta \left( 0 \right)} \right|} {\frac{{{\rm{d}}\beta }}{{\left( {{c_1} + {c_2}} \right){\beta ^{{\gamma _1}\beta }}}}} \end{aligned}$ (18)

同理可得:

${t_{{\rm{\beta 2}}}} = \int_0^1 {\frac{{{\rm{d}}\beta }}{{\left( {{c_1} + {c_2}} \right){\beta ^{{\gamma _2}}}}}} ,\left| \beta \right| < 1$ (19)
${t_{\rm{\beta }}} = {t_{{\rm{\beta 1}}}} + {t_{{\rm{\beta 2}}}}$ (20)

对于双幂次趋近律 $\dot \beta = - {c_1}{\beta ^{{\gamma _1}}}{\mathop{\rm sgn}} \left( \beta \right) - {c_2}{\beta ^{{\gamma _2}}}{\mathop{\rm sgn}} \left( \beta \right), $ 定义 $ \beta $ 在有限时间收敛到0的时间为tc。根据文献[15]可得:

${t_{{c}}} = \int_0^{\left| {\beta \left( 0 \right)} \right|} {\frac{{{\rm{d}}\beta }}{{{c_1}{\beta ^{\gamma {}_1}} + {c_2}{\beta ^{\gamma {}_2}}}}} = \frac{{1 + \beta {{\left( 0 \right)}^{1 - {\gamma _1}}}}}{{{c_1}\left( {{\gamma _1} - 1} \right)}} + \frac{1}{{{c_2}\left( {1 - {\gamma _1}} \right)}}$ (21)

定义 ${t_{{{c}}_1}} = \displaystyle\int_1^{\left| {\beta \left( 0 \right)} \right|} {\displaystyle\frac{{{\rm{d}}\beta }}{{{c_1}{\beta ^{\gamma {}_1}} + {c_2}{\beta ^{\gamma {}_2}}}}} $ ${t_{{{c}}_2}} = \displaystyle\int_0^1 {\displaystyle\frac{{{\rm{d}}\beta }}{{{c_1}{\beta ^{\gamma {}_1}} + {c_2}{\beta ^{\gamma {}_2}}}}} $ ,当0< $ \beta $ <1时, $\gamma_2 <\gamma_1 $ ,则 ${c_1}{\beta ^{\gamma {}_1}} \!+\! {c_2}{\beta ^{\gamma {}_2}} \!<\! {c_1}{\beta ^{{\gamma _2}}} \!+\! {c_2}{\beta ^{{\gamma _2}}}$ ,可得:

${t_{{{c}}_2}} = \int_0^1 {\frac{{{\rm{d}}\beta }}{{{c_1}{\beta ^{\gamma {}_1}} + {c_2}{\beta ^{\gamma {}_2}}}}} > {t_{{\rm{\beta }}_2}} = \int_0^1 {\frac{{{\rm{d}}\beta }}{{\left( {{c_1} + {c_2}} \right){\beta ^{{\gamma _2}}}}}} $ (22)

当1≤ $ \beta $ 时,有 ${\gamma _1} < {\gamma _1}\beta $ ${\gamma _2} < {\gamma _1}\beta $ ,可知 ${c_1}{\beta ^{\gamma {}_1}} + {c_2}{\beta ^{\gamma {}_2}} < $ ${c_1}{\beta ^{{\gamma _1}\beta }} + {c_2}{\beta ^{{\gamma _1}\beta }} $ ,可得:

${t_{{{c}}_1}} = \int_1^{\left| {\beta \left( 0 \right)} \right|} {\frac{{{\rm{d}}\beta }}{{{c_1}{\beta ^{\gamma {}_1}} + {c_2}{\beta ^{\gamma {}_2}}}}} > {t_{{\rm{\beta 1}}}} = \int_1^{\left| {\beta \left( 0 \right)} \right|} {\frac{{{\rm{d}}\beta }}{{\left( {{c_1} + {c_2}} \right){\beta ^{{\gamma _1}\beta }}}}} $ (23)

综上可得:

$\begin{aligned}[b]{t_{{c}}} = &{t_{{{c}}_1}} + {t_{{{c}}_2}} = \int_0^{\left| {\beta \left( 0 \right)} \right|} {\frac{{{\rm{d}}\beta }}{{{c_1}{\beta ^{\gamma {}_1}} + {c_2}{\beta ^{\gamma {}_2}}}}}= \\ &\frac{{1 + \beta {{\left( 0 \right)}^{1 - {\gamma _1}}}}}{{{c_1}\left( {{\gamma _1} - 1} \right)}} + \frac{1}{{{c_2}\left( {1 - {\gamma _1}} \right)}} > {t_{\rm{\beta }}} = {t_{{\rm{\beta 1}}}} + {t_{{\rm{\beta 2}}}}\end{aligned}$ (24)

当初始位置 $ \beta $ (0)与原点的距离小于1时,有同样的结论。

所以,采用变幂次趋近律且当总增益相同,即c=c1+c2时, $ \beta$ 能在任意初始位置 $\beta $ (0)在有限时间内收敛到0且比双幂次趋近律具有更快的速度。证毕。

对于系统式(9),采用变幂次趋近律式(14)结合式(13)可得:

$\begin{aligned}[b]\varXi \left( \beta \right) = &k\dot e + {{\ddot x}_{\rm{d}}} - \frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_1}}}{{\dot x}_1} - {{\dot d}_1}\left( t \right) - \\&\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}\left( {g\left( {{x_1},{x_2}} \right) + l\left( {{x_1},{x_2}} \right)u + {d_2}\left( t \right)} \right)\end{aligned}$ (25)

由式(25)可得:

$u = \frac{{\left[ {\varUpsilon - {{\dot d}_1}\left( t \right)/\displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}} - {d_2}\left( t \right)} \right]}}{{l\left( {{x_1},{x_2}} \right)}}$ (26)

其中, $\varUpsilon = \displaystyle\frac{{\left( { - \varXi \left( \beta \right) + k\dot e + {{\ddot x}_{\rm{d}}} - \displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_1}}}{{\dot x}_1}} \right)}}{{\displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}}} - g\left( {{x_1},{x_2}} \right)$ 。由于d1t)未知,导致 ${\dot x_1}$ 不可得,从而导致 $\dot e$ $ \beta$ 不可得。d2t)、 ${\dot d_1}\left( t \right)$ 也未知,故上述控制律无法实现,设计控制律:

$u = \frac{{\left[ {\hat \varUpsilon - \varPsi /\displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}} - \varPhi } \right]}}{{l\left( {{x_1},{x_2}} \right)}}$ (27)

其中,ΦΨ为待设计量,
  

可以通过微分器得到 ,由文献[19]可知改进的高阶无抖振快速滑模微分器有如下形式:

$\left\{ \!\!\!\!\! \begin{array}{c}{{\dot {\textit{z}}}_0} = {v_0} = - {\lambda _{0,1}}\left( {{{\textit{z}}_0} - f\left( t \right)} \right) - {\lambda _{0,2}}{\left| {{{\textit{z}}_0} - f\left( t \right)} \right|^{n/n + 1}}\times \\\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! {\mathop{\rm sgn}} \left( {{{\textit{z}}_0} - f\left( t \right)} \right) + {{\textit{z}}_1};{\rm{ }}\\ \vdots \\\ {{\dot {\textit{z}}}_i} = {v_i} = - {\lambda _{i,1}}({{\textit{z}}_i} - {v_{i - 1}}) - {\lambda _{i,2}}{\left| {{{\textit{z}}_i} - {v_{i - 1}}} \right|^{\left( {n - i} \right)/\left( {n - i + 1} \right)}}\times\\\quad\quad\quad {\mathop{\rm sgn}} \left( {{{\textit{z}}_i} - {v_{i - 1}}} \right) + {{\textit{z}}_{i + 1}},i = 1,2, \cdots ,n - 1;\\ \vdots \\\!\!{{\dot {\textit{z}}}_n} = {v_n} = - {\lambda _{n,1}}({{\textit{z}}_n} - {v_{n - 1}}) - {\lambda _{n,2}}{\left| {{{\textit{z}}_{n - 1}} - {v_{n - 1}}} \right|^{q/p}} \times\\ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! {\mathop{\rm sgn}} \left( {{{\textit{z}}_n} - {v_{n - 1}}} \right){\rm{ }}\end{array} \right.$ (28)

其中: $f\left( t \right) = {f_0}\left( t \right) + \xi \left( t \right),{f_0}\left( t \right)$ 为原始信号;ξt)为受到的噪声污染;vi为第i+1阶微分估计值;zi为系统式(28)内部状态; ${\lambda _{0,1}},{\lambda _{0,2}}, \cdots ,{\lambda _{n,1}},{\lambda _{n,2}}$ 为微分器设计参数;pq为终端吸引子设计参数。

引 理  在文献[19]的n阶滑模微分器误差系统中,对于任意有限初始状态 ${\sigma _i}\left( 0 \right),i = 0,1, \cdots ,n$ 存在n+1阶微分的任意时变函数f0t),若满足 ${f_0}{\left( t \right)^{n + 1}} \ne 0$ ,且f0tn的Lipschitz常数具有上界L>0,干扰 $\xi \left( t \right) \in \left[ { - \varepsilon ,\varepsilon } \right]$ ε>0是噪声的上界,则存在一组正数 ${\lambda _0},{\lambda _1} \cdots ,{\lambda _n}$ ${\lambda _i} = {\lambda _{i,1}} + {\lambda _{i,2}}$ ,使得误差系统是Lyapunov稳定的,且σi收敛至一个包含原点的闭球Bi内。收敛过程振荡衰减,且闭球半径满足

$r\left( {{B_i}} \right) = \frac{{{L^{\left( {n + 1} \right)p/q}}}}{{{\varLambda _i}{\varTheta _i}}} + {M_i}\varepsilon \buildrel \Delta \over = r{\left( {{B_i}} \right)_1} + r{\left( {{B_i}} \right)_2}$ (29)

其中,

$\left\{ \begin{aligned}{\varLambda _i} = &{\left( {{\lambda _{n,1}} + {\lambda _{n,2}}} \right)^{\left( {n + 1} \right)p/q}}{\left( {{\lambda _{n - 1,1}} + {\lambda _{n - 1,2}}} \right)^{n + 1}} \times \\& \cdots \times {\left( {{\lambda _{i,1}} + {\lambda _{i,2}}} \right)^{\left( {n + 1} \right)/\left( {n - i} \right)}},\\{\varTheta _i} = &{\left( {{\lambda _{i - 1,1}} + {\lambda _{i - 1,2}}} \right)^{i/n - i + 1}}{\left( {{\lambda _{i - 2,1}} + {\lambda _{i - 2,2}}} \right)^{\left( {i - 1} \right)/\left( {n - i + 2} \right)}} \times \\& \cdots \times {\left( {{\lambda _{0,1}} + {\lambda _{0,2}}} \right)^{1/n}},\\{M_i} =& 2\left( {{\lambda _{i - 1,1}} + {\lambda _{i - 1,2}}} \right) \times \cdots \times \left( {{\lambda _{0,1}} + {\lambda _{0,2}}} \right)\end{aligned} \right.\!\!\!\!\!\!$ (30)

根据式(28)构造 为:

(31)
(32)

由式(9)可得:

${\ddot x_1} = \frac{{{\rm{d}}f\left( {{x_1},{x_2}} \right)}}{{{\rm{d}}t}} + {\dot d_1}\left( t \right)$ (33)

由假设1可知, $f\left( {{x_1},{x_2}} \right)$ 为2阶可微函数,则 $\displaystyle\frac{{{\rm{d}}f\left( {{x_1},{x_2}} \right)}}{{{\rm{d}}t}}$ 在有限定区间必连续,连续函数在定区间内必有界;又因为 ${\dot d_1}\left( t \right)$ 有界,则 ${\ddot x_1}$ 有界,同理易证 ${\dot x_1}$ 有界。故设 $\left| {{{\ddot x}_1}} \right| \le L,\left| {{{\dot x}_1}} \right| \le L$

由引理可知, ${\dot x_1}$ 的误差 $ \Delta e \le r\left( {{B_0}} \right) =\displaystyle\frac{{{L^{2p/q}}}}{{{\varLambda _0}{\varTheta _0}}} +$ $ {M_0}\varepsilon $ ,如果选取合适的可调参数 ${\lambda _{0,1}}$ ${\lambda _{0,2}}$ ${\lambda _{1,1}}$ ${\lambda _{1,2}}$ ,可以保证 ${\varLambda _0}{\varTheta _0}$ 足够大,M0足够小,则最终可以保证∆e足够小。

(34)

由式(11)、(34)和引理可知,选取适当 ${\lambda _{0,1}}$ ${\lambda _{0,2}}$ ${\lambda _{1,1}}$ ${\lambda _{1,2}}$ ,可使得 $\hat \beta $ $ \beta $ 的误差也足够小。则可设计Φ $ \varPsi$ 为:

$\varPhi = - {\eta _{{{d}}_1}}{\mathop{\rm sgn}} \left( {\hat \beta } \right)$ (35)
$\varPsi = - {\eta _2}{\mathop{\rm sgn}} \left( {\hat \beta } \right){\mathop{\rm sgn}} \left( {\frac{{\partial f\left( {{x_{1}},{x_{2}}} \right)}}{{\partial {x_2}}}} \right)$ (36)
2 稳定性分析

将式(27)代入式(13),整理可得:

(37)

将式(35)和(36)代入式(37)可得:

(38)

式(38)可转化为:

(39)

式(39)可转化为:

$ \begin{aligned}[b] \dot \beta \!= & \frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}\left( {\! - {\eta _2}{\mathop{\rm sgn}} \!\left( \beta \right){\mathop{\rm sgn}} \left( {\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}} \right) - {d_2}\left( t \right)} \right)\! + \\&\left( { - {\eta _{{{d}}1}}{\mathop{\rm sgn}} \left( \beta \right) - {{\dot d}_1}\left( t \right)} \right) + \varXi \left( \beta \right) + \varOmega \end{aligned}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ (40)

其中,

由前文分析知可以使得 ${\dot x_1}$ 的误差和 $ \beta$ $\hat \beta $ 的误差都足够小,所以Ω为有界足够小的量。

由式(40)可得:

$\begin{aligned}[b]\beta \dot \beta = & - \beta \frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}\left( {{\eta _2}{\mathop{\rm sgn}} \left( \beta \right){\mathop{\rm sgn}} \left( {\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}} \right) + {d_2}\left( t \right)} \right) - \\&\beta \left( {{\eta _{{{d}}1}}{\mathop{\rm sgn}} \left( \beta \right) + {{\dot d}_1}\left( t \right)} \right) + \beta \varXi \left( \beta \right) + \beta \varOmega \end{aligned}$ (41)

式(41)可转化为:

$\begin{aligned}[b]\beta \dot \beta = &- {\eta _2}\left| \beta \right|\left| {\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}} \right| - \beta \frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}{d_2}\left( t \right) - \\&{\eta _{{{d}}1}}\left| \beta \right| - \beta {{\dot d}_1}\left( t \right) + \beta \varXi \left( \beta \right) + \beta \varOmega \end{aligned}$ (42)

由假设2可知, ${\eta _2}\left| \beta \right|\left| {\displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}} \right| > \pm {d_2}\left( t \right)\beta \displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}$ ${\eta _{{{d}}_1}}\left| \beta \right| > \pm {\ \ \dot d_1}\left( t \right)\beta $

$\begin{align}& {\text 即:} - {\eta _2}\left| \beta \right|\left| {\displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}} \right| \pm {d_2}\left( t \right)\beta \displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}} < 0{\text{,}}\\& \quad\quad\quad - {\eta _{{{d}}1}}\left| \beta \right| \pm {\dot d_1}\left( t \right)\beta < 0\end{align}$ (43)

根据前文证明,易知:

$\beta \varXi \left( \beta \right) < 0$ (44)

结合式(42),式(43)和(44)可知当 $ {\eta _2}\left| \beta \right|\left| {\displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}} \right| +$ $ \beta \displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}{d_2}\left( t \right) + {\eta _{{{d}}1}}\left| \beta \right| + \beta {\dot d_1}\left( t \right) - \beta \varXi \left( \beta \right) > \beta \varOmega $ 时,系统关于 $ \beta$ 渐近收敛。当 ${\eta _2}\left| \beta \right|\left| {\displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}} \right| + \beta \displaystyle\frac{{\partial f\left( {{x_1},{x_2}} \right)}}{{\partial {x_2}}}{d_2}\left( t \right) + $ $ {\eta _{{{d}}1}}\left| \beta \right| +\beta {\dot d_1}\left( t \right) - \beta \varXi \left( \beta \right) \le \beta \varOmega $ 时,可求得 $ \beta$ 的收敛区域,这里设 $ \beta$ 的收敛区域为ΘΩ)。

综上,最终使得:

$\beta < \varTheta \left( \varOmega \right)$ (45)

由式(45)和(11)可得:

$ke + \dot e < \varTheta \left( \varOmega \right)$ (46)

式(46)可转化为:

$\dot e < \varTheta \left( \varOmega \right) - ke$ (47)

选取李雅普诺夫函数 $V = \displaystyle\frac{1}{2}{e^2}$ ,则可得:

$\dot V = e\dot e$ (48)

由式(47)和(48)联立可得:

$\dot V = e\dot e = - k{e^2} + e\varTheta \left( \varOmega \right) \le - k{e^2} + \left| e \right|\left| {\varTheta \left( \varOmega \right)} \right|$ (49)

如果满足 $k{e^2} > \left| e \right|\left| {\varTheta \left( \varOmega \right)} \right|$ 则系统渐近稳定,因此,系统的收敛区域为 $\left| e \right| \le \displaystyle\frac{{\left| {\varTheta \left( \varOmega \right)} \right|}}{k}$

3 仿真验证

考虑熔化极气体保护焊(GMAW)的电流与电弧的非线性模型:

$\left\{\!\!\!\! {\begin{array}{*{20}{c}}{{{\dot x}_1} = {m_1}{x_2} + {m_2}{x_2}^2\left( {{l_{{\rm{ct}}}} - {x_1}} \right) - {v_{\rm{e}}} + {d_1}\left( t \right),}\\[8pt]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! { {{\dot x}_2} = - \displaystyle\frac{1}{\tau }{x_2} + \frac{1}{\tau }u + {d_2}\left( t \right)}\end{array}} \right.$ (50)

其中,τ为时间常数,m1m2为熔化系数,ve为送丝速度(这里采用等速送丝),lct为导电嘴到工件的距离x1为电弧长度,x2为实际焊接电流,u为给定量。

由于所有的函数都可以由正弦信号叠加而成,为此假设弧长是一个按正弦变化的量[20],所以取期望参考输出xd=0.006sin t+0.006;微分器的参数p=1,q=3, ${\lambda _{0,1}} \!=\! {\lambda _{0,2}} \!=\! 10$ ${\lambda _{1,1}} \!=\! {\lambda _{1,2}} \!=\! 100$ ;模型参数τ =1/15 000 s,m1=3.7 $ \times $ 10–4 m·s–1·A–1lct=0.015 m,m2=6.6 $ \times $ 10–4 A–2·m–1ve=0.267 m·s–1[21];控制器参数c1=1,c2=1,k=40, $ \gamma_0 $ =2, $ \gamma_1 $ =0.2,d1t)=0.003cos td2t)=0.002sin t,系统的初始状态x1(0)=0.008,x2(0)=88。

仿真结果如图25所示。

图2 两种趋近律电弧长度跟踪 Fig. 2 Arc lergth tracking results of the two reaching laws

图3 两种趋近律动态性能对比 Fig. 3 Dynamic performance comparison of the two reaching laws

图4 两种趋近律的跟踪误差 Fig. 4 Tracking error of two kinds of reaching law

图5 两种趋近律的控制器输入 Fig. 5 Two controller inputs for the reaching law

图2为弧长的跟踪过程,当弧长在0到12 mm之间浮动时,相应的电流在140到290 A之间波动,两种方法都可以跟踪参考输入。图3表明变幂次趋近律作用下的系统具有更好的动态性能,可以保证系统快速收敛。图4为跟踪误差的动态收敛过程,最终把误差降到±0.3%,表明滑模变结构控制可以保证系统的稳态性、鲁棒性。图5表明所设计的控制器没有发散。

4 结 论

通过研究GMAW中电弧弧长控制中非匹配不确定干扰的问题,推广到一类非匹配不确定纯反馈系统的控制跟踪问题,提出变幂次趋近律滑模变结构控制的方法。变幂次趋近律具有快速收敛的特性,并可以根据状态距离滑模面的距离,自适应地调节收敛速度,有效地降低了抖振。采用高阶滑模微分器可以快速精准地估计状态的微分,有效地处理了系统的非匹配不确定干扰,让跟踪误差收敛到平衡点附近有界区域内。最后,针对GMAW中电流与弧长模型,通过MATLAB仿真验证了该方法的有效性。

如何针对高阶非匹配不确定纯反馈非线性系统应用新型变幂次趋近律滑模控制策略尚需进一步研究。

参考文献
[1]
Hua Xueming, Song Zheng, Li Fang. Modeling and simulation of GMAW-P welding power-arc system[J]. Journal of Mechanical Engineering, 2010, 46(8): 79-88. [华学明, 宋政, 李芳. 脉冲熔化极气体保护焊焊接电源—电弧系统建模与仿真[J]. 机械工程学报, 2010, 46(8): 79-88.]
[2]
Naidu D S,Ozcelik S,Moore K L.Modeling,sensing and control of gas metal arc welding[M].Amsterdam:Elsevier,2003.
[3]
Zhang Y M, Liguo E, Walcott B L. Robust control of pulsed gas metal arc welding[J]. Journal of Dynamic Systems Measurement & Control, 2002, 124(2): 281-289.
[4]
Thomsen J S. Control of pulsed gas metal arc welding[J]. International Journal of Modelling Identification & Control, 2006, 1(1): 115-125.
[5]
Ge S S, Wang C. Adaptive NN control of uncertain nonlinear pure-feedback systems[J]. Automatica, 2002, 38(4): 671-682. DOI:10.1016/S0005-1098(01)00254-0
[6]
Yang Y, Feng G, Ren J. A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems[J]. IEEE Transactions on Systems Man and Cybernetics—Part A Systems and Humans, 2004, 34(3): 406-420. DOI:10.1109/TSMCA.2004.824870
[7]
Wang M, Liu X, Shi P. Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique[J]. IEEE Transactions on Systems,Mans,and Cybernetics,Part B:Cybernetics, 2011, 41(6): 1681-1692. DOI:10.1109/TSMCB.2011.2159111
[8]
Du H, Shao H, Yao P. Adaptive neural network control for a class of low-triangular-structured nonlinear systems[J]. IEEE Transactions on Neural Networks, 2006, 17(2): 509-514. DOI:10.1109/TNN.2005.863403
[9]
Li Huijie, Cai Yuanli. Sliding mode control with double power reaching law[J]. Control and Decision, 2016, 31(3): 498-502. [李慧洁, 蔡远利. 基于双幂次趋近律的滑模控制方法[J]. 控制与决策, 2016, 31(3): 498-502.]
[10]
高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996:220–221.
[11]
Yu S, Yu X, Shirinzadeh B. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964. DOI:10.1016/j.automatica.2005.07.001
[12]
Mei Hong, Wang Yong. Fast convergent sliding mode variable structure control of robot[J]. Information and Control, 2009, 38(5): 552-557. [梅红, 王勇. 快速收敛的机器人滑模变结构控制[J]. 信息与控制, 2009, 38(5): 552-557.]
[13]
Li Peng, Ma Jianjun, Zheng Zhiqiang. Sliding mode control approach based on nonlinear integrator[J]. Control Theory and Application, 2011, 28(5): 619-624. [李鹏, 马建军, 郑志强. 采用幂次趋近律的滑模控制稳态误差界[J]. 控制理论与应用, 2011, 28(5): 619-624.]
[14]
Zhang Hexin, Fan Jinfuo, Meng Fei. New two direction reaching law for sliding mode control[J]. Control and Decision, 2013, 28(2): 289-293. [张合新, 范金锁, 孟飞. 一种新型滑模控制双幂次趋近律[J]. 控制与决策, 2013, 28(2): 289-293.]
[15]
Zhang Yao, Ma Guangfu, Guo Yanning. A multi power reaching law of sliding mode control design and analysis[J]. Journal of Automation, 2016, 42(3): 466-472. [张瑶, 马广富, 郭延宁. 一种多幂次滑模趋近律设计与分析[J]. 自动化学报, 2016, 42(3): 466-472.]
[16]
Thomsen J S.Advanced control methods for optimization of arc welding[D].Aalborg:Aalborg University,2005.
[17]
Liu Yonghua. Backstepping control for a class of pure feedback nonlinear systems[J]. Control theory and Application, 2014, 31(6): 801-804. [刘勇华. 一类纯反馈非线性系统的反推控制[J]. 控制理论与应用, 2014, 31(6): 801-804.]
[18]
刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
[19]
Pu Ming, Wu Qingxian, Jiang Changsheng. Fast high-order sliding mode differentiator[J]. Control and Decision, 2012, 27(9): 1415-1420. [蒲明, 吴庆宪, 姜长生. 快速高阶滑模微分器[J]. 控制与决策, 2012, 27(9): 1415-1420.]
[20]
Pu Ming, Wu Qingxian, Jiang Changsheng. New method of sliding-mode control for higher order nonlinear system with mismatched uncertainties[J]. Control Theory and Application, 2012, 29(6): 708-714. [蒲明, 吴庆宪, 姜长生. 非匹配不确定高阶非线性系统的滑模控制新方法[J]. 控制理论与应用, 2012, 29(6): 708-714.]
[21]
Gao Zhonglin, Hu Shengsun, Yin Fengliang. Simulation of sliding mode variable structure control of current and arc length in GMAW system[J]. Journal of Welding, 2007, 28(6): 53-56. [高忠林, 胡绳荪, 殷凤良. GMAW系统电流与弧长的滑模变结构控制仿真[J]. 焊接学报, 2007, 28(6): 53-56.]