工程科学与技术   2017, Vol. 49 Issue (5): 71-77
山区河流浅水河床漂石对局部水流结构影响试验研究
董晓1,2, 王淑英3, 叶晨1, 王协康1     
1. 四川大学 水力学与山区河流开发保护国家重点实验室 水利水电学院,四川 成都 610065;
2. 四川省港航开发有限责任公司,四川 成都 610041;
3. 浙江省水文局,浙江 杭州 310009
基金项目: 国家重点研发计划重点资助项目(2016YFC0402304-1);国家自然科学基金资助项目(51639007;51579163)
摘要: 西南山区河道普遍分布着大量的卵砾石、漂石等大粒径床沙,漂石颗粒急剧调整局部水流结构与泥沙输移,从而制约着河床响应过程。以漂石河床水流结构为研究对象,结合野外典型河段调查和概化试验,利用3维多普勒流速仪(ADV)详细测量漂石区域的3维流速,探讨浅水条件下漂石颗粒对局部水流运动的影响。分析表明:漂石对水流结构的影响集中在其下游中心区域,尤其是远部尾流区内,其纵向范围主要集中在约–1<Δx/D<2区域,其中漂石附近的近底流速变化明显,远部尾流区边界高度也从受漂石影响较小的上游0.3~0.4倍水深发展到受漂石影响较大的下游0.5~0.7倍水深处;中心纵剖面紊动能和雷诺应力数值显著大于左右两侧,且其数值在漂石下游激增至1~10倍和1~16倍,两者出现峰值的位置都集中在漂石远部尾流区末端。研究还发现,漂石相对淹没度(H/D,平均水深与漂石有效直径之比)对漂石附近的水流结构有较大影响,随着相对淹没深度(H/D)的增加,其对流速、紊动能和雷诺应力的影响逐渐增强,在处于临界淹没度H/D = 1.2时最为强烈,之后强度递减。不同相对淹没度(H/D)下,流速、紊动能和雷诺应力恢复区长度相近,且与远部尾流区尺度变化基本一致。总体而言,漂石通过改变局部沿程流速、紊动参数和远部尾流区分布,从而显著影响浅水河床局部水流结构,其具体影响因子和响应规律有待进一步深入研究。
关键词: 山区河流    漂石    相对淹没度    水流结构    
Experimental Study on Influences of Boulder on Flow Structure in Mountain River with Shallow Depth Conditions
DONG Xiao1,2, WANG Shuying3, YE Chen1, WANG Xiekang1     
1. State Key Lab. of Hydraulics and Mountain River Eng.,College of Water Resource & Hydropower,Sichuan Univ.,Chengdu 610065,China;
2. Sichuan Port and Channel Development Co.,Ltd.,Chengdu 610041,China;
3. Hydrological Bureau of Zhejiang Province,Hangzhou 310009,China
Abstract: There were big amount of large-size sediments such as pebbles and boulders on the bed of mountain rivers in Southwest China,which adjusting the surrounding water structure and sediment transportation,and thus greatly affected the process of bed transformation.In this study,the influence of boulders on flow movement with shallow depth conditions was analyzed and discussed.The research included both the field investigation of typical riverbed and open channel experiments,in which the Acoustic Doppler Velocimeter (ADV) was used to measure the three-dimensional velocities in vicinity of the boulder to understand the flow mechanism better.The analysis showed that the effect of boulder on longitudinal velocity concentrated in the central plain at the downstream of the boulder,especially in the far-wake region,and the longitudinal impact of boulder was concentrated at the range of –1<Δx/D<2,the near-bottom velocity changed significantly near the boulder,and the boundary height of far-wake region raised from about (0.3~0.4)D in the less influenced upstream region to about (0.5~0.7)D at the more influenced downstream region;the values of turbulence kinetic energy and Reynolds stress in central plain were much higher than those measured at the left and right sides,both increased sharply by about (1~10),(1~16) times compared with the initial value and both of their peak occurred at the end of the far-wake region;the flow structure also was found to be greatly affected by the boulder particle submergence degree (H/D,the ratio between mean water depth and boulder effective diameter),the influence on the hydraulic parameters such as velocity,turbulence kinetic energy and Reynolds stress firstly increased with the increase of the boulder particle submergence degree (H/D),reached at a maximum value at the critical-submergence degree of H/D=1.2,and then decreased.With different particle submergence degree (H/D),different hydraulic parameters’ recovery length and the scale of far-wake region were comparable.In summary,the boulder has great impact on flow structure through changing surrounding longitudinal velocity,turbulent parameters and the distribution of far-wake region,the details of effective factors and the laws should be further analyzed.
Key words: mountain rivers    boulder    relative submergence degree    flow structure    

中国西南地区山区河流坡陡流急,河床组成多为宽级配卵砾石颗粒,尤其是受地震后期的滑坡、泥石流等次生灾害影响,大量粗大卵砾石及漂石颗粒从坡沟地被携带至河床,致使局部水流运动发生显著变化,并进一步作用于泥沙输移及河床冲淤过程。

众多研究者,如Tan等[1]基于试验手段,探讨了卵砾石及漂石颗粒对水流结构的影响。Buffin-Belanger等[2]通过野外测量,指出大颗粒下游流速降低,紊动加剧,局部区域水流存在分区现象。Tritico等[3]和Strom等[4]利用声速多普勒流速仪(ADV)测量了粗糙颗粒和突出岩屑周围流场,指出其周围水流结构会发生突变。王协康等[57]基于卵石河床及受漂石影响河床的清水冲刷试验,认为不同水沙条件显著影响粗化稳定的床面形态和水流结构,漂石颗粒不同淹没程度时的沟床响应与泥沙补给存在较大差异。Lacey等[89]基于漂石完全淹没的流场测量,指出纵剖面雷诺切应力远高于其余方向,并推断出漂石周围主要通过纵向的漩涡引起动量交换。Sadeque等[10]指出水流遇到河床突出的漂石,在漂石尾部将产生近部尾流区和远部尾流区。Dey[1112]和Hajimiraie[13]等在水槽试验中将大颗粒概化成球体或圆柱体,从而分析其尾流区水力参数的变化,指出流场主要呈后扫和前凸两种形式,并伴随不同的紊动能分布。Sarkar等[14]探讨了粗糙床面球体对水流紊动参数的影响,初步认为颗粒局部的3维空间水流参数各项异性趋势沿程减小,并趋向于与上游一致。山区河流受季节性来水影响,河床的漂石颗粒淹没特征变化剧烈,对局部水流运动影响显著。

本文以野外调查为基础,利用ADV流速仪精确测量漂石不同淹没条件下的水流运动参数,深入分析垂向流速分布、平均流速、紊动能及雷诺应力等水流结构特征,为系统研究漂石对局部水流结构的影响提供科学依据。

1 试验设置

通过对都江堰岷江支流白沙河的野外调查,发现山区浅水河床处存在大量漂石和卵砾石颗粒,床面形态复杂,极大地影响局部水流结构。试验水槽为长16 m、宽0.505 m、深0.4 m的平底水槽,底部为水泥抹面,坡降0.01%。试验段选在水槽中心,铺沙长度为5 m、高度为0.1 m,前后各铺设长1 m的三角形卵砾石,以平稳铺沙断面水流,试验水槽及测速设备见图1

ADV架设在水槽上方,测速范围在0~2.5 m/s,频率为50 Hz,测量时间1 min,约测3 000点,筛选出选择相关系数70%以上,噪声分贝15 dB以下,整体置信数据高于90%的数据点进行分析[15]。采用笛卡尔坐标,漂石初始位置背面中心与水槽中心重合,试验保持原点位置不变,取顺水流方向为x轴,流速为u,横向为y轴,流速为v,垂向为z轴,流速为w,采用漂石特征粒径或上游来流平均值进行无量纲化。试验漂石颗粒从岷江支流白沙河采集,形态特征见图2

试验床沙为d50=0.007 m的均匀卵砾石颗粒,试根据漂石影响范围及尾迹带长度布置测点,试验工况见表1

图1 试验装置示意图 Fig. 1 Sketch of experimental flume

图2 试验漂石及砾石特征 Fig. 2 Photos of the boulder and gravel

表1 试验工况及相关参数汇总 Tab. 1 Summary of experimental parameters in all cases

2 试验结果分析 2.1 漂石局部纵剖面流速特征沿程变化

图3为不同淹没度下漂石局部中心纵剖面流速变化。由图3可知,漂石显著影响区域为 $ - 1 \! < \! \Delta x/D \! < \! 2$ ,随淹没度(H/D)增加,整体流速减小,流速变化强度产生差异:H/D=0.6、0.8工况,离漂石较远的上游区域,纵向水流垂向分布特性基本保持不变,上游受壅水影响,近底流速减小[16]H/D>1工况,上游近底流速略减,尾流区受分离涡影响,近底流速显著减小,并产生回流现象;H/D=1.2工况尾流区近底流速下跌,近表面流速上升;H/D=1.5工况尾流区流速整体呈下跌趋势。流速变化幅度随淹没度(H/D)增加先增大,在H/D=1.2工况达到最强后减小。根据各工况流速变化趋势,将漂石局部流速结构及尾流区分布概化见图4

图3 不同淹没度下漂石中心测面速度分布 Fig. 3 Velocities in different relative submergence degree of boulder of central section

图4 漂石局部流速结构及尾流区分布 Fig. 4 Velocity structure and wake region around boulder

基于以上内容,分析纵向垂线平均流速的沿程变化(图5):不同淹没度(H/D)下垂线流速变化区间集中在 $\overline U /{{\overline U_0}} $ =0.8~1.2;水流被漂石挤向左右两侧,上游近底水流受漂石阻挡,流速锐减,近表面水流由于漂石的存在压缩了过水断面,流速激增,以上作用综合下使得左右侧流速在 $ - 1 \!< \! \Delta x/D \! < \! 1$ 范围内增加且均大于中心流速,不对称来流和漂石形态参数的影响使得左右侧流速不对称;尾流区内由于左右侧水流向中心混掺,使得左右侧流速高于中心,尤其是H/D=1.2工况中心流速锐减至 $\overline U / {{\overline U_0}} $ =0.4,随着混掺作用沿程减弱及黏滞性的阻尼影响,Δx/D>1后流速逐渐回升,H/D=0.8~1.5工况恢复区长度依次约为1.2D、2D、2.5D

图5 漂石不同淹没度垂线平均流速变化 Fig. 5 Average velocities in different relative submergence degree of boulder

进一步分析恢复区尺度(图6):3个工况尾流区内u= $\overline U $ 区域长度依次约为1.2D、2D、2.5D,和垂线流速恢复尺度一致;H/D=0.6工况上游u= $\overline U $ 点在0.1~0.25倍水深处波动,可能是由于测量深度较小,近底流速拉低了垂线平均流速值,使得u= $\overline U $ 点高度降低;H/D=0.8及H/D=1.2工况下,受漂石影响较小的上游垂线u= $\overline U $ 点在0.3~0.4倍水深处,受漂石影响较大的局部u= $\overline U $ 点渐变为0.5~0.7倍水深处,该结果和Strom等[4]试验引入漂石影响后u= $\overline U $ 处由0.35倍变为0.6倍水深的结论大致相符;H/D=1.5工况沿程u= $\overline U $ 点都在0.5~0.7倍水深处波动,可能是由于淹没度(H/D)的增加扩大了漂石的影响范围导致。随着淹没度(H/D)的增加,左右侧尾流区u= $\overline U $ 区域形态趋于平缓且不同工况之间差异减小,说明漂石由非淹没状态过渡到淹没状态,左右壁面对水流的折冲效应减小,尾流区范围增加,区内掺混作用减弱。

图6 漂石不同淹没度特征流区尺度变化 Fig. 6 Scales of special flow region in different relative submergence degree of boulder

2.2 漂石局部区域紊动能变化

紊动能与水流掺混、尾涡分离及能量耗散关系密切,是衡量漂石对局部水流结构影响强度的重要参数,由式(1)得到:

$TKE = 0.5({u{'}^2} + {v{'}^2} + {w{'}^2})$ (1)

式中:TKE为连续湍流下的平均紊动能,TKE0代表测量起点上游来流的平均紊动能初始值,单位为J; $ u{'} $ $ v{'} $ $ w{'} $ 表征3个方向速度脉动的强度,单位为m/s。分析发现(图7):漂石对紊动的影响集中在下游,上游区域变幅较小,随着淹没度(H/D)增加,在漂石下游 $1 < \Delta x/D < 2$ 区域,紊动能激增;H/D=0.8工况右侧紊动能略高于左侧,恢复区长度约1.2DH/D=1.2工况下,中心紊动能相对来流增加了约6~10倍,恢复区长度约2DH/D=1.5工况也增加了约3倍,下游左右测面紊动能变幅相对较小,恢复区长度约2.5DH/D=1.2工况左右侧紊动能相差无几,紊动集中在中心测面;H/D=1.5左侧紊动能略高于右侧,左右侧紊动能变化略滞后于中心测面。TKE整体变化与Lu等[17]利用数值模拟方法获得的漂石下游紊动能激增的趋势一致。

图7 漂石不同淹没度紊动能变化 Fig. 7 Turbulent kinetic energy in different relative submergence degree of boulder

2.3 漂石局部区域雷诺切应力分布特性

由于试验水流为雷诺数较大的紊流,如表1所示,因而紊动混掺在流场中起决定性作用,其脉动速度产生的雷诺附加应力反映出紊动的强度,并能影响流场中平均和脉动压力的变化,进而改变水流结构。图8为不同淹没条件下的雷诺应力统计特性,表明纵剖面雷诺切应力大小及变幅明显高于其余两方向,这与Lacey等[89]试验结论相符,故取为特征应力进行分析。由式(2)得到:

${T_{\rm uw}} = - \rho \overline {u{'}w{'}} $ (2)

式中:Tuw为纵剖面雷诺切应力,Tuw0为测量起点上游来流的纵剖面雷诺切应力初始值,Pa; $\rho $ 为水的密度,kg/m3Tuw沿程变化趋势与紊动能相似,但更剧烈,漂石对Tuw的影响集中在 $ - 1 < \Delta x/D <$ 2区域(图9)。H/D<1工况时,Tuw波动范围在Tuw/Tuw0=0.8~1.2左右,波幅较小;H/D=1.2工况时,左右侧Tuw数值差异较小,维持初始值有轻微波动,中心变化明显,Tuw在Δx/D=–0.8处由初始值开始激增至Δx/D=1.2、Tuw/Tuw0=16,峰值维持约Δx/D=0.3的短暂距离后迅速下跌至Δx/D=2、Tuw/Tuw0=6,随后数值保持平缓波动,稳定值约是左右侧数值的7倍;H/D=1.5工况时,左侧Tuw数值约是右侧1.5倍,沿程波动较H/D=1.2工况略强且各有2~3个峰值,中心波动明显,上游从初始值开始缓步上升至Δx/D= –1处略微减小,然后在约Δx/D=0.3、Tuw/Tuw0=0.5处激增至Δx/D=1.8、Tuw/Tuw0=6,随后直线下跌至Δx/D=2、Tuw/Tuw0=2后趋于平缓,稳定值介于左右侧数值之间,不同工况恢复区长度依次约为1.5D、2.2D、2.5D

图8 不同淹没度特征断面3方向雷诺切应力分布 Fig. 8 Reynolds shear stress in three directions of specific sections

图9 漂石不同淹没度纵垂向雷诺切应力变化 Fig. 9 Reynolds shear stress in different relative submergence degree of boulder

3 结 论

在次生地质灾害和天然河床演变的共同作用下,山区河流河床中易分布卵石群、漂石等大颗粒推移质,这些颗粒粒径远大于原始床面组分,显著影响局部水流结构及相关水力特性参数。结合野外调查与系列概化模型试验,主要得出以下结论:

1)试验表明,漂石对局部水流结构的影响集中在 $ - 1 < \Delta x/D < 2$ 区域中心测面,u= $\overline U $ 流区尺度恢复长度与纵向垂线平均流速、紊动能恢复长度一致,与雷诺切应力恢复长度大体一致,说明漂石对水流的影响范围集中在远部尾流区内。随着淹没度(H/D)的增大,尾流区尺度增加,相关水力特性参数在漂石下游变化明显,说明淹没度(H/D)的增加减弱了左右壁面的折冲效应,加大了下游水流的紊动掺混和对水流结构的改变。

2)水流结构变化强度随着淹没度(H/D)的增大而先增加后减小,全工况中H/D=1.2时的变幅最大。纵向垂线平均流速沿程分布与紊动能、雷诺切应力变化趋势相反,雷诺切应力与紊动能变化趋势趋同且稍强于紊动能。漂石局部水力要素突变处和峰值集中在远部尾流区首尾两端,漂石对紊动的扩大效应为1~10倍左右,对纵剖面雷诺切应力的扩大效应为1~16倍左右。

3)主要研究不同淹没度下单颗粒漂石对局部水流结构的影响,天然条件下床面形态起伏更大,不同粒径床沙的分选及复杂阵列的漂石排布都会对局部水流结构产生复合影响[1819],今后将引入更多变量,细化研究。

参考文献
[1]
Tan L, Curran J C. Comparison of turbulent flows over clusters of varying density[J]. Journal of Hydraulic Engineering, 2012, 138(12): 1031-1044. DOI:10.1061/(ASCE)HY.1943-7900.0000635
[2]
Buffin-Belanger T, Roy A G. Effects of a pebble cluster on the turbulent structure of a depth-limited flow in a gravel-bed river[J]. Geomorphology, 1998, 25(3): 249-267.
[3]
Tritico H M, Hotchkiss R H. Unobstructed and obstructed turbulent flow in gravel bed rivers[J]. Journal of Hydraulic Engineering, 2005, 131(8): 635-645. DOI:10.1061/(ASCE)0733-9429(2005)131:8(635)
[4]
Strom K B, Papanicolaou A N. ADV measurements around a cluster microform in a shallow mountain stream[J]. Journal of Hydraulic Engineering, 2007, 133(12): 1379-1389. DOI:10.1061/(ASCE)0733-9429(2007)133:12(1379)
[5]
Wang Xiekang, Yang Qingyuan, Wang Xianye. Experimental study on interrelationship of sediment transport,flow structure and stable bedform on clear-water scour in gravel-bed flume[J]. Journal of Sichuan University (Engineering Science Edition), 2006, 38(3): 6-12. [王协康, 杨青远, 王宪业. 卵石床面清水冲刷稳定形态及其水流结构试验研究[J]. 四川大学学报(工程科学版), 2006, 38(3): 6-12.]
[6]
Wang Xiekang, Yang Qingyuan, Wang Xianye. The velocity profile in gravel open channel flow[J]. Journal of Sichuan University (Engineering Science Edition), 2007, 39(2): 14-19. [王协康, 杨青远, 王宪业. 卵砾石床面时均流速分布的试验研究[J]. 四川大学学报(工程科学版), 2007, 39(2): 14-19.]
[7]
Wang Xiekang, Wang Bingjie, Wang Haizhou. Experimental study on influences of boulder on channel responses and sediment supply with limited water depth in mountain river[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(6): 46-50. [王协康, 王冰洁, 王海周. 山区河流浅水条件下漂石对河床响应与泥沙补给影响的试验研究[J]. 四川大学学报(工程科学版), 2016, 48(6): 46-50.]
[8]
Lacey R W J, Roy A G. The spatial characterization of turbulence around large roughness elements in a gravel-bed river[J]. Geomorphology, 2008, 102(3): 542-553.
[9]
Lacey R W J, Roy A G. A comparative study of the turbulent flow field with and without a pebble cluster in a gravel bed river[J]. Water Resources Research, 2007, 43(5): 1-7.
[10]
Sadeque M A F, Rajaratnam N, Loewen M R. Shallow turbulent wakes behind bed-mounted cylinders in open channels[J]. Journal of Hydraulic Researches, 2009, 47(6): 727-743. DOI:10.3826/jhr.2009.3464
[11]
Dey S, Sarkar S, Bose S K. Wall-wake flows downstream of a sphere placed on a plane rough-wall[J]. Journal of Hydraulic Engineering, 2011, 137(10): 1173-1189. DOI:10.1061/(ASCE)HY.1943-7900.0000441
[12]
Dey S, Sarkar S, Solari L. Near-bed turbulence characteristics at the entrainment threshold of sediment beds[J]. Journal of Hydraulic Engineering, 2011, 137(9): 945-958. DOI:10.1061/(ASCE)HY.1943-7900.0000396
[13]
Hajimirzaie S M, Tsakiris A G, Buchholz J H J. Flow characteristics around a wall-mounted spherical obstacle in a thin boundary layer[J]. Experimental of Fluids, 2014, 55(6): 1-14.
[14]
Sarkar S, Dey S. Turbulent length scales and anisotropy downstream of a wall mounted sphere[J]. Journal of Hydraulic Researches, 2015, 53(5): 649-658. DOI:10.1080/00221686.2015.1086830
[15]
Buffin-Belanger T, Roy A G. 1 Min in the life of a river:Selecting the optimal record length for the measurement of turbulence in fluvial boundary layers[J]. Geomorphology, 2005, 68(1/2): 77-94.
[16]
Hopkinson L C, Walburn C Z. Near-boundary velocity and turbulence in depth-varying stream flows[J]. Environ Fluid Mechanics, 2016, 16(3): 559-574. DOI:10.1007/s10652-015-9440-1
[17]
Lu T, Joanna C C. Comparison of turbulent flows over clusters of varying density[J]. Journal of Hydraulic Engineering, 2012, 138(12): 1031-1044. DOI:10.1061/(ASCE)HY.1943-7900.0000635
[18]
Ding L, Bernitsas M M, Kim E S. 2-d URANS vs.experiments of flow induced motions of two circular cylinders in tandem with passive turbulence control for 30 000<Re<105 000[J]. Ocean Engineering, 2013, 72: 429-440. DOI:10.1016/j.oceaneng.2013.06.005
[19]
Czarnomski N M, Tullos D D, Thomas RE. Effects of vegetation canopy density and bank angle on near-bank patterns of turbulence and Reynolds stresses[J]. Journal of Hydraulic Engineering, 2012, 138(11): 974-978. DOI:10.1061/(ASCE)HY.1943-7900.0000628