###
工程科学与技术:2023,55(5):232-241
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于改进YOLOv4-Tiny的矿井电机车多目标实时检测
郭永存1,2,3,4, 杨豚1,4, 王爽1,3,4
(1.安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001;2.安徽理工大学 矿山智能装备与技术安徽省重点实验室,安徽 淮南 232001;3.矿山智能技术与装备省部共建协同创新中心,安徽 淮南 232001;4.安徽理工大学 机械工程学院,安徽 淮南 232001)
Multi-object Real-time Detection of Mine Electric Locomotive Based on Improved YOLOv4-Tiny
GUO Yongcun1,2,3,4, YANG Tun1,4, WANG Shuang1,3,4
(1.State Key Lab. of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui Univ. of Sci. and Technol., Huainan 232001, China;2.Anhui Key Lab. of Mine Intelligent Equipment and Technol., Anhui Univ. of Sci. and Technol., Huainan 232001, China;3.Collaborative Innovation Center for Mining Intelligent Technol. and Equipment, Huainan 232001, China;4.School of Mechanical Eng., Anhui Univ. of Sci. and Technol., Huainan 232001, China)
摘要
图/表
参考文献
相似文献
附件
本文已被:浏览 476次   下载 260
投稿时间:2022-01-07    修订日期:2022-09-07
中文摘要: 为解决煤矿巷道环境恶劣及人工疲劳驾驶电机车导致煤矿井下有轨电机车事故频发的问题,提出一种基于改进YOLOv4-Tiny算法的YOLOv4-Tiny-4S矿井电机车多目标实时检测方法。首先,为了提高网络模型对于小目标的检测能力,将传统YOLOv4-Tiny的两尺度预测增加至4尺度预测,并且在网络模型的颈部引入空间金字塔池化(spatial pyramid pooling,SPP)模块,以丰富特征融合信息,增大网络模型的感受野。其次,以煤矿巷道中的行人、电机车、信号灯及碎石作为检测目标,创建矿井电机车多目标检测数据集,并分别采用K-means和K-means++聚类分析算法对数据集重新聚类;对比分析结果表明,K-means++算法具有更好的聚类效果。最后,通过对传统YOLOv4-Tiny算法的消融实验,进一步展示了不同改进措施对网络模型检测性能的影响;并在电机车运行的煤矿巷道场景中,对比分析了YOLOv4-Tiny-4S算法与其他几种算法的检测性能。实验结果表明:YOLOv4-Tiny-4S算法能够准确检测并识别出图像中的各类目标,其平均精度均值(mean average precision,mAP)为95.35%,对小目标“碎石”的平均精度(average precision,AP)为86.69%,相比传统YOLOv4-Tiny算法分别提高了12.38%和41.66%;改进后算法的平均检测速度达58.7 帧/s(frames per second,FPS),模型内存仅为26.3 Mb,YOLOv4-Tiny-4S算法的检测性能优于其他算法。本文提出的基于YOLOv4-Tiny-4S矿井电机车多目标实时检测方法可为实现矿井电机车的无人驾驶提供技术支撑。
Abstract:Accidents of the rail electric locomotive in the underground are frequently occurring due to the poor coal mine roadway environment and fatigue-limited manual driving. To address this issue, an improved YOLOv4-Tiny framework, called YOLOv4-Tiny-4S, is proposed to achieve multi-object real-time detection for rail electric locomotive. A 4-scale prediction head is designed to enhance the detection ability of small objects based on the 2-scale prediction of YOLOv4-Tiny. Spatial pyramid pooling (SPP) is introduced into the neck network to extend the receptive field and enrich the fused features. In this work, the detection objects concern person, locomotive, stone and lamp in the coal mine roadway, and a new dataset is constructed to validate the proposed approach. The K-means and K-means++ algorithms are applied to re-cluster the samples, and K-means++ has a better performance in this dataset. The ablation studies over YOLOv4-Tiny are conducted to validate the technical improvements in this work. The result comparison over other baselines demonstrates that the proposed approach can detect and recognize the required objects in the underground rail electric locomotive with considerable high performance, achieving 95.35% mean average precision. Specifically, the average precision for small object “stone” reaches 86.69%, yielding 12.38% and 41.66% improvements over YOLOv4-Tiny. The average detection speed of the proposed approach is 58.7 frames per second (FPS), with only 26.3 Mb memory. The proposed multi-object real-time detection method is expected to provide technical support for the unmanned driving of mine electric locomotive.
文章编号:202200019     中图分类号:TP391.4    文献标志码:
基金项目:国家自然科学基金项目(51904007);安徽省科技重大专项资助项目(202003a05020021);安徽高校协同创新资助项目(GXXT-2020-60)
作者简介:第一作者:郭永存(1965-),男,教授,博士.研究方向:煤矿机器人.E-mail:guoyc1965@126.com;通信作者:杨豚,E-mail:yangtun0324@126.com
引用文本:
郭永存,杨豚,王爽.基于改进YOLOv4-Tiny的矿井电机车多目标实时检测[J].工程科学与技术,2023,55(5):232-241.
GUO Yongcun,YANG Tun,WANG Shuang.Multi-object Real-time Detection of Mine Electric Locomotive Based on Improved YOLOv4-Tiny[J].Advanced Engineering Sciences,2023,55(5):232-241.