###
工程科学与技术:2019,51(2):108-114
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于MLR-SARIMA模型的土石坝位移预测
李斌1,2, 胡德秀1,2, 杨杰1,2, 程琳1,2
(1.西安理工大学 水利水电学院, 陕西 西安 710048;2.西北旱区生态水利国家重点实验室 西安理工大学, 陕西 西安 710048)
Displacement Prediction of Earth Dam Based on MLR-SARIMA Model
(1.Inst. of Water Resources and Hydro-electric Eng., Xi'an Univ. of Technol., Xi'an 710048, China;2.State Key Lab. of Eco-hydraulics in Northwest Arid Region of China (Xi'an Univ. of Technol.), Xi'an 710048, China)
摘要
图/表
参考文献
相似文献
附件
本文已被:浏览 2229次   下载 1337
投稿时间:2018-03-27    修订日期:2018-09-02
中文摘要: 为分析周期因子与时效因子分别对土石坝位移的影响,更好地掌握土石坝位移变化的成因和趋势,进行土石坝位移数据中周期成分和趋势成分的变化规律和预测方法研究。采用HP(Hodrick-Prescott)滤波将实测位移序列分解为趋势项和周期项两部分,对趋势项建立基于MLR(multiple linear regression)的预测模型,对周期项建立基于SARIMA(seasonal auto-regressive integrated moving average)的预测模型,结合以上两模型的结果对土石坝位移进行预测,即MLR-SARIMA预测模型。该模型突出了MLR模型在趋势性数据上的预测优势和SARIMA模型在周期性数据上的预测优势,且仅从实测位移数据分析预测,可适用于缺少环境量数据的情况。实测位移序列经HP滤波分解后,趋势项位移呈缓慢增长趋势,年变幅从1.42至0.51 mm逐渐降低,表明由时效因子引起的土石坝趋势性位移量逐年减小,且已趋于稳定;周期项位移具有明显年周期性,这是由于土石坝位移受到年周期性变化的水位和温度影响,年变幅约为7.00 mm,表明该土石坝位移量主要是由周期因子引起的周期性位移;该变化规律符合土石坝位移的一般变化规律,说明HP滤波可很好地提取土石坝位移数据中的周期成分和趋势成分。MLR-SARIMA模型预测结果准确,相对误差较小,均在5%以内,且均方根误差、平均绝对误差百分比和调整的平均绝对误差百分比这3个指标均优于单一SARIMA模型,表明MLR-SARIMA模型突出了其在预测周期性和趋势性数据方面的优势,可适用于土石坝位移预测。
中文关键词: 土石坝  MLR-SARIMA模型  位移预测  HP滤波
Abstract:In order to analyze the effects of periodic factors and trend factors on the displacement of earth-rockfill dam, and grasp the cause and trend of displacement change better, the change rule and prediction method of periodic component and trend component in displacement of earth-rockfill dam were studied. HP filter was used to decompose measured displacement sequence into trend term and periodic term. MLR prediction model was established for the trend term and SARIMA prediction model was established for the periodic term, which is MLR-SARIMA model for displacement prediction of earth-rockfill dam. MLR-SARIMA model highlighted the prediction advantages of MLR model on trend data and SARIMA model on periodic data, and it only needed measured displacement data to carry out the prediction analysis. After the HP filter decompose, the trend displacement had a slow growth trend, and the annual amplitude decreased from 1.42 mm to 0.51 mm. It was shown that the trend displacement of earth-rock dam caused by aging factor decreased year by year and tended to be stable. The periodic displacement had a significant annual periodicity. This was due to the annual periodic changes of water level and temperature. The annual amplitude was about 7.00 mm. The displacement of the earth-rockill dam was mainly caused by periodic displacement.The change rule was consistent with the general earth-rockfill dam. The results showed that the HP filter can be used to extract the trend and periodic terms in displacement data of earth-rockfill dam. The prediction results of MLR-SARIMA model were accurate, the relative error was small, within 5%, the RMSE, MAPE and AMAPE evaluation index of the model were both better than single SARIMA model. It was shown that the MLR-SARIMA model highlighted its advantages in predicting trend and periodicity data, which can be applied to prediction of horizontal displacement of earth dam.
文章编号:201800341     中图分类号:TV641    文献标志码:
基金项目:西北旱区生态水利工程国家重点实验室培育基地基金资助项目(2016ZZKT-8);国家自然科学基金面上项目资助(51579207)
作者简介:李斌(1989-),男,博士生.研究方向:水工结构与安全监控研究.E-mail:278335788@qq.com
引用文本:
李斌,胡德秀,杨杰,程琳.基于MLR-SARIMA模型的土石坝位移预测[J].工程科学与技术,2019,51(2):108-114.
LI Bin,HU Dexiu,YANG Jie,CHENG Lin.Displacement Prediction of Earth Dam Based on MLR-SARIMA Model[J].Advanced Engineering Sciences,2019,51(2):108-114.