###
工程科学与技术:2018,50(4):104-109
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于GMM的航班轨迹预测算法研究
(1.四川大学 视觉合成图形图像技术国防重点学科实验室, 四川 成都 610065;2.四川大学 国家空管自动化系统技术重点实验室, 四川 成都 610065)
Study on Algorithm for Flight Trajectory Prediction Based on GMM
(1.National Key Lab. of Fundamental Sci. on Synthetic Vision, Sichuan Univ., Chengdu 610065, China;2.National Key Lab. of Air Traffic Control Automatization System Technol., Sichuan Univ., Chengdu 610065, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1970次   下载 1390
投稿时间:2017-07-12    修订日期:2018-06-15
中文摘要: 航班轨迹预测是空中交通管理与仿真技术的基础。针对现有预测方法预测精度和稳定性不足的问题,提出了一种基于历史雷达数据和机器学习方法的轨迹预测算法。算法首先基于概率统计模型(高斯混合模型)对航班运行过程中的相邻时刻的相对位置偏移量进行建模;随后,以该航班的历史飞行轨迹为训练数据采用期望最大化的机器学习算法优化模型参数。概率统计模型学习真实运行环境下同一航班的飞机运动模式,能更准确地描述航班在飞行过程的随机性。在已学习到概率统计模型的基础上,采用序贯蒙特卡洛思想采样航班各时刻的相对位置偏移向量序列。针对特定的航班轨迹预测,使用起飞机场的跑道位置和标高信息与预测的航班位置偏移量预测航班在各个更新时刻的位置信息并形成最终的航班轨迹。算法中预设模型参数更新机制,包含预测误差超过阈值、定时和手动更新。将提出的算法运用在某大型空中交通流量管理系统中,大量真实历史数据实验表明:与传统的运动学方法和回归模型相比,本文算法能得到更加准确和平稳的航班轨迹预测结果。
Abstract:Flight trajectory prediction is the basis of air traffic management and simulation. Aiming at the problems of insufficient accuracy and instability of existing prediction methods, a trajectory prediction algorithm based on historical radar data and machine learning was proposed in this paper. The positional offsets between adjacent update moments were regarded as the model object and Gaussian mixture model (GMM) was applied to model the distribution of data. Then the historical flight trajectory was used to optimize the model parameters by expectation maximization (EM) algorithm. The probabilistic statistical model can precisely describe the randomicity of flight operation by learning the moving pattern of the same flight with collected trajectory. Based on the learned model, the sequential Monte Carlo (SMC) approach was used to sample the relative position offsets sequence at each update time during flight operation. For a given flight, the position and elevation of the runway at the departure airport are the initialization of trajectory. Combined with sequence of positional offsets, the position of the flight was predicted, which further generates a complete flight trajectory. The model parameters were updated based on the collected trajectories in the database when the prediction errors exceed the preset threshold, or over a regular period of time. The proposed method has been applied to a real air traffic flow management system. The results showed that the prediction results are more accurate than that of kinematic model and regression model. Moreover, during the climb and descent phase of the flight, the prediction results are more stable than that of the existing methods, which is a fatal bottleneck of these methods.
文章编号:201700541     中图分类号:TP391    文献标志码:
基金项目:国家空管委十二五国家空管科研专项资助项目(GKG201403004)
作者简介:林毅(1989-),男,博士生.研究方向:空中交通管理、多源信息融合.E-mail:phxly0710@163.com
引用文本:
林毅,张建伟,武喜萍,刘宇.基于GMM的航班轨迹预测算法研究[J].工程科学与技术,2018,50(4):104-109.
LIN Yi,ZHANG Jianwei,WU Xiping,LIU Yu.Study on Algorithm for Flight Trajectory Prediction Based on GMM[J].Advanced Engineering Sciences,2018,50(4):104-109.