本文已被:浏览 1971次 下载 443次
投稿时间:2015-09-21 修订日期:2015-11-28
投稿时间:2015-09-21 修订日期:2015-11-28
中文摘要: 针对当前攻击图模型中很少考虑攻击事件对所有属性节点置信度的动态影响,提出一种基于贝叶斯攻击图的动态风险评估(dynamicriskassessmentbasedonBayesianattackgraphs,DRABAG)模型。该模型运用贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,其中,采用通用漏洞评分系统指标计算漏洞利用成功概率,并利用局部条件概率分布表评估属性节点的静态安全风险;进而结合入侵检测系统观测到的实时攻击事件,运用贝叶斯推理方法对单步攻击行为的后验概率进行动态更新,最终实现对目标网络整体安全性的评估。实验结果表明,该模型可评估动态安全风险和推断攻击路径,为实施安全防护策略提供依据。
Abstract:In order to solve the problem that all attribute node beliefs are influenced dynamically by the observed attack events in attack graph model,based on Bayesian attack graph,a dynamic risk assessment model was presented.The probability attack graph,which describes the cause consequence relationships among the steps in one attack progress,was built by using Bayesian belief networks.The probability of vulnerabilities, which is successfully executed by an attacker,was computed by using index of common vulnerability scoring system,and the static security risk of the property node was assessed by introducing local conditional probability tables.Then,by combining real time attack events being observed by intrusion detection system,the posterior probability was calculated dynamically when the attack occurred by applying Bayesian inference.Finally,the security risk of the target networks was evaluated.Experimental results showed that the model can assess dynamical security risk and deduce attack path, and provide effective guidance for taking security hardening strategy.
文章编号:201500993 中图分类号: 文献标志码:
基金项目:国家自然科学基金资助项目(61373176); 国家科技支撑计划资助项目(2013BAK01B02); 陕西省自然基金资助项目(2015JQ7278)
作者 | 单位 |
高妮 | 西北大学信息科学与技术学院 |
高岭 | 西北大学信息科学与技术学院 |
贺毅岳 | 西北大学信息科学与技术学院, 西北大学经济管理学院 |
雷艳婷 | 西北大学信息科学与技术学院 |
高全力 | 西北大学信息科学与技术学院 |
作者简介:
引用文本:
高妮,高岭,贺毅岳,雷艳婷,高全力.基于贝叶斯攻击图的动态安全风险评估模型[J].工程科学与技术,2016,48(1):111-118.
GaoNi,GaoLing,HeYiyue,LeiYanting,GaoQuanli.DynamicSecurityRiskAssessmentModelBasedonBayesianAttackGraph[J].Advanced Engineering Sciences,2016,48(1):111-118.
引用文本:
高妮,高岭,贺毅岳,雷艳婷,高全力.基于贝叶斯攻击图的动态安全风险评估模型[J].工程科学与技术,2016,48(1):111-118.
GaoNi,GaoLing,HeYiyue,LeiYanting,GaoQuanli.DynamicSecurityRiskAssessmentModelBasedonBayesianAttackGraph[J].Advanced Engineering Sciences,2016,48(1):111-118.