引用本文: 黄先北, 方涛, 郭嫱, 等. 开敞式进水池喇叭口悬空高度对吸气涡的影响 [J]. 工程科学与技术, 2023, 55(5): 161-168.
HUANG Xianbei, FANG Tao, GUO Qiang, et al. Effect of Floor Clearance of Bell Mouth on Air-entrained Vortex in Open Intake [J]. Advanced Engineering Sciences, 2023, 55(5): 161-168.
 Citation: HUANG Xianbei, FANG Tao, GUO Qiang, et al. Effect of Floor Clearance of Bell Mouth on Air-entrained Vortex in Open Intake [J]. Advanced Engineering Sciences, 2023, 55(5): 161-168.

## 开敞式进水池喇叭口悬空高度对吸气涡的影响

• 收稿日期:  2022-03-05
• 网络出版时间:  2022-10-13 09:23:41
• 中图分类号: TV671

## Effect of Floor Clearance of Bell Mouth on Air-entrained Vortex in Open Intake

• 摘要: 开敞式进水池是中小型泵站中重要的水工建筑，其在结构尺寸设计不合理时易出现空气吸入涡（air-entrained vortex，简称吸气涡），严重时会发生空蚀，从而严重影响泵站安全稳定运行。在开敞式进水池中，喇叭口悬空高度C对进水池流动影响较大。本文根据泵站设计规范中给定的悬空高取值范围，采用简化的耦合水平集与流体体积方法（simple coupled level-set and volume-of-fluid method，S-CLSVOF）捕捉水气交界面，并基于分叉模型（bifurcation model，BM）进行数值模拟，分析了吸气涡随喇叭口悬空高度的变化规律，并从喇叭口处涡量及涡拟能的角度，分析了产生该规律的机理。结果表明：吸气涡的大小和进水管内相对吸气率β呈正相关，且平均相对吸气率在3×10–4～7×10–4之间；平均相对吸气率基本随悬空高度的增加呈下降趋势，但在C = 0.35DD为喇叭口直径）处出现突降的情况；每个方案涡量随时间的变化规律表明涡量可定量体现吸气涡的强度；通过对涡拟能输运方程中的分析，发现漩涡受到的拉伸作用决定了平均相对吸气率的变化规律，且与吸气率的变化规律一致，揭示了吸气率突降的机理。同时，分析研究结果发现，在设计进水池时，考虑到吸气涡程度与泵的安装，C = 0.35D的悬空高度为最优选择。本文结论对进水池的设计具有指导意义。

Abstract: Open intake is an important hydraulic structure in small and medium-size pump stations. The air-entrained vortex is prone to occur in the open intake when the structural size design is unreasonable, and cavitation may occur in serious cases, affecting the safe and stable operation of the pumping station. The previous studies have revealed that the floor clearance C has a great influence on the flow in the intake, but the influence on the air-entrained vortex is not given. According to the value range of floor clearance given in the design code of pump station, this paper uses the S-CLSVOF method to capture the water air interface, and carries out numerical simulation based on Bifurcation model, and analyzes the variation law of air-entrained vortex with the floor clearance of bell mouth. Combining the vorticity at the bell mouth and the Reynolds-averaged enstrophy, the mechanism of this variation law is analyzed. The results show that the size of air-entrained vortex is related to the relative air-entrainment rate β in the inlet pipe, the average of which was 3×10–4～7×10–4. The value of β basically decreased with the increase of floor clearance, but there was a sudden drop at C=0.35D (D is the bell mouth diameter). The variation law of vorticity with time in each scheme is analyzed, and the vorticity can quantitatively reflect the intensity of air-entrained vortex. Through the analysis of Reynolds-averaged enstrophy transport equation, it is found that the tilting effect of the vortex determines the variation of the average relative air-entrainment rate, which is consistent with the change law of the air-entrainment rate, and also reveals the mechanism of the sudden drop. When designing the intake, by considering the degree of air-entrained vortex and the installation of pump, C=0.35D is the optimal choice.

• 开敞式进水池是中小型泵站中重要的水工建筑之一，进水池的设计通常会影响整个进水池流态的情况，当流态较差时，会形成吸气涡[12]。吸气涡的产生会导致泵装置产生震动、噪声，严重时还会发生空蚀，极大地影响了整个泵站运行的安全稳定[34]。因此，如何合理地设计进水池结构参数，减轻或抑制吸气涡形成至关重要。

近年来，国内外许多学者对泵站进水池的吸气涡进行了大量的研究。一方面是吸气涡试验观测，主要是采用粒子图像测速法（particle image velocimetry，PIV）[56]，其对模型的透明度有一定的要求，当水流混浊时会影响精度，且成本昂贵。另一方面是吸气涡的数值模拟，吸气涡的数值模拟主要采用雷诺平均法（Reynolds-averaged Navier–Stokes，RANS）[79] 和大涡模拟（large eddy simulation，LES）[1011] ，其中LES的计算精度高，这导致其计算量偏高。Huang等[12]通过对比不同的模型，最终提出采用分叉模型（bifurcation model，BM）和简化的耦合水平集与流体体积方法（simple coupled level-set and volume-of-fluid method，S-CLSVOF）对吸气涡进行数值模拟的效果较好，该方法能够完整地再现泵站进水池吸气涡和精确地捕捉气液交界面。

在泵站进水池结构尺寸优化方面，许多学者采用单因素或多因素的方式，研究了喇叭口悬空高度、后壁距和淹没深度等参数对进水池中流态的影响[1315]。其中，资丹等[16]采用了响应面的方式研究了悬空高度、后壁距和淹没深度之间的交互作用，发现悬空高度和后壁距对进水池的流态影响较大。

然而，上述研究侧重于进水池的流动均匀性，但进水池结构尺寸对吸气涡的影响规律尚不明确。国内外的泵站设计规范[1718]规定了后壁距与侧壁距的推荐尺寸，但对于悬空高度仅给出取值范围。考虑到悬空高度对进水池流态的影响，并尽可能保证与设计规范的一致性，本文基于BM湍流模型和S-CLSVOF方法，重点研究泵站进水池喇叭口悬空高度对吸气涡的影响规律，并给出合适的悬空高度取值，为泵站进水池设计提供理论依据。

雷诺平均Navier–Stokes方程如下：

 $$\frac{{\partial (\rho {{\boldsymbol{u}}})}}{{\partial t}} + \nabla \cdot (\rho {{\boldsymbol{uu}}}) = - \nabla p + \rho \nu \Delta {{\boldsymbol{u}}} - \rho \nabla {{\tau}} + {{{\boldsymbol{S}}}_{\rm{t}}}$$ (1)

式中，u为速度矢量，t为时间，ρ为流体的密度，p为压强，ν为运动黏度，τ为雷诺应力，St为动量源项。

τ可由式（2）计算：

 $$\tau {\text{ = }}{\tau ^{\rm{d}}} + \frac{{2k}}{3}\delta$$ (2)

式中，τd为偏斜雷诺应力，k为湍动能，δ为Kronecker符号。

式（2）可由涡动黏度假设得到：

 $$\tau {{ = }} - {\text{2}}{\nu _{\rm{t}}}{{\boldsymbol{S}}} + \frac{{2k}}{3}\delta$$ (3)

式中：vt为涡黏系数；S为应变率张量，表示为：

 $${{\boldsymbol{S}}}=\frac{1}{2}(\nabla {{\boldsymbol{u}}}+{\nabla }^{{\rm{T}}}{{\boldsymbol{u}}})$$ (4)

本文采用Lien和Kalitzin[19]修正的BM模型。其基本方程如下：

 $$\frac{{\partial (k)}}{{\partial t}} + \nabla \cdot (k{{\boldsymbol{u}}}) = {P_{\rm{k}}} + \left(\nu + \frac{{{\nu _{\rm{t}}}}}{{{\sigma _{\rm{k}}}}}\right)\Delta k - \varepsilon$$ (5)
 $$\frac{{\partial \varepsilon }}{{\partial t}} + \nabla \cdot (\varepsilon {{\boldsymbol{u}}}) = \frac{{{C_{{\rm{\varepsilon 1}}}}{P_{\rm{k}}} + {C_{{\rm{\varepsilon 2}}}}\varepsilon }}{T} + \left(\nu + \frac{{{\nu _{\rm{t}}}}}{{{\sigma _{\rm{\varepsilon }}}}}\right)\Delta \varepsilon$$ (6)
 $$\frac{{\partial {v^2}}}{{\partial t}} + \nabla \cdot ({v^2}{{\boldsymbol{u}}}) = kf - \frac{{{v^2}}}{k}\varepsilon + \left(\nu + \frac{{{\nu _{\rm{t}}}}}{{{\sigma _{\rm{k}}}}}\right)\Delta {v^2}$$ (7)
 $${L^2}\nabla f - f = \frac{1}{T}\left[ {({C_1} - 6)\frac{{{v^2}}}{k} - \frac{2}{3}({C_1} - 1)} \right] - {C_2}\frac{{{P_{\rm{k}}}}}{k}$$ (8)

式（5）～（8）中，ε为湍流耗散率，v2为方向雷诺应力，f为椭圆松弛率，T为时间尺度，Pk为湍动能产生率， ${\sigma _{\rm{k}}} = 1 ，$ ${\sigma _{\rm{\varepsilon }}} = 1.3 ，$ ${C_{\varepsilon 1}} = 1.4(1 + 0.05\sqrt {k/{v^2}} ) ，$ ${C_{\varepsilon 2}} = 1.9$ ${C_1} = 1.4$ ${C_2} = 0.3$ L为湍流特征长度。

 $${\nu _{\rm{t}}} = C_{\text{µ}} ^*{v^2}T$$ (9)
 $$C_{\text{µ}} ^* = {C_{\text{µ}}}\frac{{1 + {a_2}\left| {{\eta _3}} \right| + {a_3}{\eta _3}}}{{1 + {a_4}\left| {{\eta _3}} \right|}}{\left( {\sqrt {\frac{{1 + {a_5}{\eta _1}}}{{1 + {a_5}{\eta _2}}}} + {a_1}\sqrt {{\eta _2}} \sqrt {\left| {{\eta _3}} \right| - {\eta _3}} } \right)^{ - 1}}$$ (10)

式中： ${a_1} = 0.055\sqrt {{f_1}}$ ${a_2} = 0.5{f_1}$ ${a_3} = 0.25{f_1}$ ${a_4} = 0.2\sqrt {{f_1}}$ ${a_5} = 0.025$ ${f_1} = \sqrt {{v^2}/(0.367k)}$ ${\eta _1} = {{{\boldsymbol{S}}}^*}{{{\boldsymbol{S}}}^*}$ ${\eta _{{2}}} = {{{\boldsymbol{\varOmega }}}^*}{{{\boldsymbol{\varOmega}} }^*}$ ${\eta _3} = {\eta _1}{{ - }}{\eta _2}$ ，其中， ${{{\boldsymbol{S}}}^*}$ 为无量纲应变率张量， ${{{\boldsymbol{S}}}^*} = 0.5T{{\boldsymbol{S}}}$ ${{{\boldsymbol{\varOmega}} }^*}$ 为无量纲旋转速率张量， ${{{\boldsymbol{\varOmega }}}^*} = 0.5T{{\boldsymbol{\varOmega}} }$ ${{\boldsymbol{\varOmega }}}$ 为旋转速率张量。

采用Davidson等[21]提出的修正方式，将涡黏系数修正为 $0 \leqslant {\nu _{\rm{t}}} \leqslant {\text{0}}{\text{.09}}{k^2}/\varepsilon$

S-CLSVOF是一种耦合水平集法和流体体积法的简化版本[2223]。为了便于捕捉气液交界面，引入水平集法（Level-set）的方程：

 $$\frac{{\partial \phi }}{{\partial \tau }} = S({\phi _0})(1 - \left| {\nabla \phi } \right|)$$ (11)
 $$\phi ({{\boldsymbol{x}}},0) = {\phi _0}({{\boldsymbol{x}}})$$ (12)

式（11）～（12）中， $\phi$ 为流场中某点到交界面的无量纲距离，τ为模拟时间， $\phi_0$ 为场中某点到交界面的初始距离，x为位置矢量，S为喇叭口淹没深度。

由于 $\phi$ 是用于确定交界面的，所以可以用 $\phi$ 表示表面张量：

 $${{\boldsymbol{F}}_\sigma } = \sigma \kappa (\phi )\delta (\phi )\nabla \phi$$ (13)

式中，σ为表面张力系数，其余量定义如下：

 $$\kappa (\phi ) = \nabla \cdot \left( {\frac{{\nabla \phi }}{{\left| {\nabla \phi } \right|}}} \right)$$ (14)
 $${\qquad \delta (\phi )=\left\{ \begin{array}{l}\dfrac{1}{2\gamma }\left(1+\mathrm{cos}\left(\dfrac{{\text{π}} \phi }{\gamma }\right)\right),\left|\phi \right| \lt \varepsilon; \\ 0,其他\end{array}\right. }$$ (15)

式（14）～（15）中： $\gamma = {\text{1}}{\text{.5}}{x_\Delta }$ ${x_\Delta }$ 为距离交界面最近的网格尺度； $\kappa$ 为自由曲面曲率。

为了保证质量守恒，沿用流体体积法（volume of fluid，VOF）。本文采用OpenFOAM–2.2.2，其液相体积分数输运方程为：

 $${\qquad \frac{{\partial ({\alpha _{\rm{l}}})}}{{\partial t}} + \nabla \cdot ({\alpha _{\rm{l}}}{{\boldsymbol{u}}}) + \nabla \left[ {{\alpha _{\rm{l}}}(1 - {\alpha _{\rm{l}}}){{{\boldsymbol{u}}}_{\rm{c}}}} \right] = 0 }$$ (16)

式中， ${\alpha _{\rm{l}}}$ 为液相体积分数， ${{{\boldsymbol{u}}}_{\rm{c}}}$ 为压缩速度。

两相采用Mixture模型，二者速度与压力相同。

根据文献[18]标准设计进水池的几何尺寸，如图1所示。进水池的长度为1 612.5 mm（>10DD为喇叭口直径），宽度为300.0 mm（2D），D为150.0 mm，吸水管直径为100.0 mm，吸水管侧壁距为150.0 mm，后壁距为112.5 mm（0.75D）。由文献[24]可知，吸气涡存在比尺效应。为减小比尺效应的影响，本文保证雷诺数Re和弗劳德数Fr相同，定义见式（17）、（18）：

图  1  进水池模型尺寸
Fig.  1  Model size of intake
 $$Re = \frac{{uD}}{\nu }$$ (17)
 $$Fr = \frac{u}{{\sqrt {gS} }}$$ (18)

式中，u为喇叭口进口速度，g为重力加速度。

为此，固定喇叭口淹没深度为130 mm（0.87D），流量为0.0167 m3/s。根据文献[18]，喇叭口悬空高度C取值为0.3D～0.5D，为进一步分析低悬空高的影响，本文将研究范围拓展为0.2D～0.5D，其中，各方案的参数设置见表1

表  1  各方案的参数设置
Table  1  Parameter setting of each scheme
 方案编号 C·D–1 网格数/106 进口流速/(m·s–1) M1 0.20 1.21 0.348 0 M2 0.25 1.28 0.3323 M3 0.30 1.37 0.3174 M4 0.35 1.44 0.305 0 M5 0.40 1.51 0.292 3 M6 0.45 1.59 0.281 9 M7 0.50 1.60 0.271 0

将模型分为3个计算域，可以得到两个交界面，分别为水气交界面和水域与管道域交界面（图2）。交界面采用任意网格交界面（arbitrary mesh interface， AMI）[25]。出口采用流量出口，体积流量均设定为0.016 7 m3/s；进口给定均匀来流速度，见表1；空气域上边界为总压边界，设定为大气压力；其余边界均为固壁面。压力–速度耦合求解采用PISO（pressure-implicit with splitting of operators）算法，梯度与散度项采用二项精度的“Gauss linear”格式，时间步长为1×10–4，模拟时间为20 s。

图  2  进水池3维模型
Fig.  2  Three-dimensional model of the intake

为了验证本文数值模拟方法的可靠性，采用文献[26]公开的数据进行验证。需要说明的是，文献[26]为了更好地观测吸气涡，将进水管向进水池侧壁偏移了10 mm。此处基于偏移后的模型进行计算，取10.0～15.5 s内的结果作时间平均。

图3所示为选取线段上的速度分布。在喇叭口下方15 mm处选取线段如图3（a）所示，模拟所得该线段上z方向上的速度分量uz的分布与试验值趋势一致。

图  3  选取线段上的速度分布
Fig.  3  Velocity distribution on the sampling line

根据文献[12]，采用 ${\alpha _{\rm{l}}}$ =0.95的等值面可以较好地显示吸气涡的形态，如图4（a）所示。与试验结果（图4（b））对比可见，数值模拟较好地捕捉到了吸气涡的形态。因此本文采用的数值模拟方法是可靠的。

图  4  吸气涡在数值模拟与PIV试验观测的对比
Fig.  4  Comparison between numerical simulation and PIV experimental observation of air-entrained vortex

为定量分析吸气涡程度，采用相对吸气率描述，其定义为[27]

 $$\beta {\text{ = }}\frac{{1 - {\alpha _{{\rm{lo}}}}}}{{{\alpha _{{\rm{lo}}}}}}$$ (19)

式中，β为吸气率， ${\alpha _{{\rm{lo}}}}$ 取计算域出口面的液相体积分数。

选取M1、M3、M4、M5和M7共5种方案在第12 s时的吸气涡形态进行对比，结果如图5所示。显然，M1的吸气率最高，M4的吸气率最低。由此可见，图5所观测的吸气涡形态可由计算域出口的相对吸气率定量体现。

图  5  不同方案吸气涡形态对比（t=12 s）
Fig.  5  Air-entrained vortex shape of different schemes (t=12 s)

从水面到喇叭口的吸气涡形态来看，M1（C=0.2D）的吸气涡大小均相对于其他方案的吸气涡更显著。进水管内的吸气涡呈破碎状，且随着悬空高的增加，吸气涡呈减小的趋势，在M4时基本消失，而随后在M5～M7（M6未显示）中重新出现，但仍小于M1～M3（M2未显示）。

计算每个方案、每个时刻的相对吸气率，如图6所示，可见相对吸气率随时间变化较大，因此采用离散时刻来表征某一方案整体的吸气涡程度不合理。由图6可见，M1的吸气率在10 s后达到类似周期性的变化规律，且其余方案的规律相近。因此，对10 s后的 $\; \beta$ 求平均值 $\overline \beta$

图  6  相对吸气率随时间的变化（M1）
Fig.  6  Variation of relative air-entrainment rate with time (M1)

平均相对吸气率 $\overline \beta$ 随悬空高度的变化规律曲线，如图7所示。从图7可以看出，平均相对吸气率整体随悬空高度增加而降低，但在M4（C=0.35D）方案吸气率突降，其原因将在后文进一步分析。从泵站设计的角度来看，尽管M4与M7的吸气率均较低，但悬空高度的提高将使相同条件下的泵淹没深度降低，从而降低泵装置的空化性能。综合而言，M4优于M7。

图  7  $\overline {\boldsymbol{\beta}}$ C的变化规律曲线
Fig.  7  Variation curve of $\overline {\boldsymbol{\beta}}$ with C

涡量是表征流体旋转运动的物理量之一，通常情况下用于表示流体旋转运动的强度。下文从涡量的角度分析导致M4相对吸气率降低的原因。

图8为M1、M3、M4、M5、M7在第20 s时喇叭口上方5 mm处的涡量在z方向上分量Ωz云图。从图8可看出，涡量集中在某些区域，但其位置并不一致。此外，涡量集中区域分正值和负值两类，这是因为有2个吸气涡进入进水管（图5），且旋转方向相反。对比5种方案的涡量分布，发现M4和M7的涡量峰值区域更小，说明漩涡更弱，这与前文分析一致。

图  8  喇叭口上方5 mm处涡量分布（t=20 s）
Fig.  8  Vorticity distribution 5 mm above the bell mouth (t=20 s)

为定量显示每个方案涡量随时间的变化规律，计算进水管内距离涡量峰值|Ωz|max所在位置10 mm的圆形区域内的均值，并对其作时间平均，如图9所示。对比图7可知，涡量均值随悬空高度的变化规律基本与吸气率均值变化规律一致，说明涡量可定量体现吸气涡的强度，且强度越大吸气率越高。

图  9  各方案| ${\boldsymbol{\varOmega}}_{{\textit{z}}}$ |的均值
Fig.  9  Mean value of | ${\boldsymbol{\varOmega}}_{{\textit{z}}}$ | of each scheme

为进一步分析吸气率随悬空高度变化规律的内在机理和平均相对吸气率突降的原因，基于式（20）所示的涡拟能输运方程进行分析：

 $$\frac{D}{{Dt}}\left( {\frac{{\omega _{\textit{z}}^2}}{2}} \right) = \underbrace {{\omega _{\textit{z}}}{\omega _x}\frac{{\partial w}}{{\partial x}} + {\omega _{\textit{z}}}{\omega _y}\frac{{\partial w}}{{\partial y}}}_{\displaystyle{T_1}} + \underbrace {{\omega _{\textit{z}}}{\omega _{\textit{z}}}\frac{{\partial w}}{{\partial {\textit{z}}}}}_{\displaystyle{T_2}}$$ (20)

式中：ωxωyωz表示涡量xyz的分量；T1为倾斜项，表征漩涡受到的倾斜作用；T2为拉伸项，表征漩涡受到的拉伸作用；二者均体现了涡拟能的变化率[28]

由文献[29]可知，T2是导致吸气涡形成的主要原因。为方便数据处理与研究，对T2用进行无量纲处理 $\left( {{\omega _{\textit{z}}}{\omega _{\textit{z}}}\dfrac{{\partial w}}{{\partial {\textit{z}}}}} \right)/(u/D)$ 图10为M1、M3、M4、M5、M7在第20 s喇叭口上方5 mm处的无量纲化的T2分布。

图  10  喇叭口上方5 mm处T2的分布（t=20 s）
Fig.  10  Distribution of T2 at 5 mm above the bell mouth (t=20 s)

图10可见，各方案进水管中的T2值均在200以上。其中：M1的T2值在200以上的区域几乎充满整个管道；其他4个方案的T2值在200以上的区域集中在管道的一侧，而这4个方案的分布也略有不同。由T2的峰值可知，随着悬空高度的增加，T2整体呈下降趋势，但在M4出现突降，与图7规律一致。由此可见，不同方案下吸气涡形成后，吸气率取决于漩涡受到的拉伸作用，其中M4的拉伸作用相比M3与M5发生突降，从而导致相应的涡拟能变化率降低，最终导致漩涡强度下降，吸气率降低。

本文基于BM模型和S-CLSVOF界面追踪方法，采用OpenFOAM–2.2.2进行数值模拟，研究了泵站进水池喇叭口悬空高度对吸气涡的影响，得出以下结论：

1）分析不同时刻的吸气涡形态，发现吸气涡的大小和进水管内相对吸气率β呈正相关。

2）通过计算各方案进水管出口处的相对吸气率，发现相对吸气率基本随悬空高度的增加呈下降趋势，但当C=0.35D时，出现突降。

3）管内涡量的大小体现了吸气涡的程度，与相对吸气率的规律一致。另外，涡拟能输运方程中拉伸项T2决定了涡量的变化，从而影响平均相对吸气率，是导致平均相对吸气率在C=0.35D处出现突降的关键因素。

4）考虑到吸气涡程度与泵的安装，M4方案（C=0.35D）为最优选择。

• 图  1   进水池模型尺寸

Fig.  1   Model size of intake

图  2   进水池3维模型

Fig.  2   Three-dimensional model of the intake

图  3   选取线段上的速度分布

Fig.  3   Velocity distribution on the sampling line

图  4   吸气涡在数值模拟与PIV试验观测的对比

Fig.  4   Comparison between numerical simulation and PIV experimental observation of air-entrained vortex

图  5   不同方案吸气涡形态对比（t=12 s）

Fig.  5   Air-entrained vortex shape of different schemes (t=12 s)

图  6   相对吸气率随时间的变化（M1）

Fig.  6   Variation of relative air-entrainment rate with time (M1)

图  7   $\overline {\boldsymbol{\beta}}$ C的变化规律曲线

Fig.  7   Variation curve of $\overline {\boldsymbol{\beta}}$ with C

图  8   喇叭口上方5 mm处涡量分布（t=20 s）

Fig.  8   Vorticity distribution 5 mm above the bell mouth (t=20 s)

图  9   各方案| ${\boldsymbol{\varOmega}}_{{\textit{z}}}$ |的均值

Fig.  9   Mean value of | ${\boldsymbol{\varOmega}}_{{\textit{z}}}$ | of each scheme

图  10   喇叭口上方5 mm处T2的分布（t=20 s）

Fig.  10   Distribution of T2 at 5 mm above the bell mouth (t=20 s)

表  1   各方案的参数设置

Table  1   Parameter setting of each scheme

 方案编号 C·D–1 网格数/106 进口流速/(m·s–1) M1 0.20 1.21 0.348 0 M2 0.25 1.28 0.3323 M3 0.30 1.37 0.3174 M4 0.35 1.44 0.305 0 M5 0.40 1.51 0.292 3 M6 0.45 1.59 0.281 9 M7 0.50 1.60 0.271 0
•  [1] 何耘,陈惠泉,李玉梁.前后串列布置的吸水管周围流场PIV实验研究[J].水力发电学报,2008,27(1):37–41. He Yun,Chen Huiquan,Li Yuliang.Experimental research on flow field with PIV measurements around the intake arranged in cascade suction pipes[J].Journal of Hydroelectric Engineering,2008,27(1):37–41 [2] 王自明,王月华,韩晓维,等.泵站进水池自由表面漩涡研究[J].中国农村水利水电,2018(7):158–160. Wang Ziming,Wang Yuehua,Han Xiaowei,et al.Research on the free surface vortex in suction sump of pumping station[J].China Rural Water and Hydropower,2018(7):158–160 [3] 肖若富,李宁宁.进水池形状对吸入涡影响试验研究[J].排灌机械工程学报,2016,34(11):953–958. Xiao Ruofu,Li Ningning.Experimental investigation into effects of sump shape on suction vortex[J].Journal of Drainage and Irrigation Machinery Engineering,2016,34(11):953–958 [4] 何耘.水泵进水池旋涡研究的主要进展[J].水力发电学报,2004,23(5):92–96. He Yun.Main advances of research on vortices in pump sumps[J].Journal of Hydroelectric Engineering,2004,23(5):92–96 [5] Keller J,Möller G,Boes R M.PIV measurements of air-core intake vortices[J].Flow Measurement and Instrumentation,2014,40:74–81. [6] Rajendran V P,Patel V C.Measurement of vortices in model pump-intake bay by PIV[J].Journal of Hydraulic Engineering,2000,126(5):322–334. [7] Park Y K,Dey M K,Choi Y H,et al.Numerical visualization of air intake induced by free surface vortex[J].Journal of Thermal Science,2017,26(6):540–544. [8] 丛国辉,王福军.湍流模型在泵站进水池漩涡模拟中的适用性研究[J].农业工程学报,2008,24(6):31–35. Cong Guohui,Wang Fujun.Applicability of turbulence models in numerical simulation of vortex flow in pump sump[J].Transactions of the Chinese Society of Agricultural Engineering,2008,24(6):31–35 [9] Guo Qiang,Huang Xianbei,Qiu Baoyun,et al.The formation of the steady and unsteady air-entrained vortices in pump sump[J].International Journal of Multiphase Flow,2020,129:103312. [10] 张德胜,李普熙,赵睿杰,等.泵站进水池吸入口涡旋结构及湍流特性的大涡模拟[J].农业机械学报,2019,50(10):134–141. Zhang Desheng,Li Puxi,Zhao Ruijie,et al.Large eddy simulation of vortex structure and turbulence characteristics in pump sump[J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(10):134–141 [11] Zi Dan,Xuan Anqing,Wang Fujun,et al.Numerical study of mechanisms of air-core vortex evolution inanintakeflow[J].International Journal of Heat and Fluid Flow,2020,81:108517. [12] Huang Xianbei,Guo Qiang,Qiu Baoyun,et al.Prediction of air-entrained vortex in pump sump:Influence of turbulence models and interface-tracking methods[J].Journal of Hydraulic Engineering,2020,146(4):04020010. [13] 成立,刘超,周济人,等.泵站开敞式进水池几何参数的数值模拟[J].农业机械学报,2009,40(1):50–55. Cheng Li,Liu Chao,Zhou Jiren,et al.Numerical simulation on geometrical parameters for open pump sump[J].Transactions of the Chinese Society for Agricultural Machinery,2009,40(1):50–55 [14] 杨帆,刘超,汤方平,等.悬空高对泵装置流道内流特性的影响[J].农业机械学报,2015,46(2):40–45. Yang Fan,Liu Chao,Tang Fangping,et al.Effect of bottom clearance on flow characteristics of pumping system by CFD and PIV[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(2):40–45 [15] 史志鹏,刘家春,尹伟,等.泵站开敞式进水池水流水力特性研究[J].水电能源科学,2013,31(4):153–155. Shi Zhipeng,Liu Jiachun,Yin Wei,et al.Research on flow characteristics in open inlet sump of pump station[J].Water Resources and Power,2013,31(4):153–155 [16] 资丹,王福军,姚志峰,等.基于响应曲面模型的泵站进水池参数优化方法研究[J].水利学报,2017,48(5):594–607. Zi Dan,Wang Fujun,Yao Zhifeng,et al.Research on optimization method of pump sump parameters based on response surface model[J].Journal of Hydraulic Engineering,2017,48(5):594–607 [17] 中华人民共和国水利部.泵站设计规范:GB 50265—2010[S].北京:中国计划出版社,2011 [18] American National Standards Institute.American national standard for pump intake design:ANSI/HI 9.8–2012[S].New York:Hydraulic Institute,2012. [19] Lien F S,Kalitzin G.Computations of transonic flow with the v2–f turbulence model[J].International Journal of Heat and Fluid Flow,2001,22(1):53–61. [20] Pettersson R B A,Durbin P A,Ooi A.Modeling rotational effects in eddy-viscosity closures[J].International Journal of Heat and Fluid Flow,1999,20(6):563–573. [21] Davidson L,Nielsen P V,Sveningsson A.Modifications of the V2 model for computing the flow in a 3D wall jet[C]//Proceedings of the International Symposium on Turbulence,Heat and Mass Transfer.Denmark:Aalborg University,2003. [22] Albadawi A,Donoghue D B,Robinson A J,et al.Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment[J].International Journal of Multiphase Flow,2013,53:11–28. [23] Yamamoto T,Okano Y,Dost S.Validation of the S-CLSVOF method with the density-scaled balanced continuum surface force model in multiphase systems coupled with thermocapillary flows[J].International Journal for Numerical Methods in Fluids,2017,83(3):223–244. doi: 10.1002/fld.4267 [24] Hirata K,Funaki J,Kubota Y,et al.Occurrence condition of air entrainment into a vertical wet-pit pump[J].Journal of Fluid Science and Technology,2013,8(3):364–379. [25] Farrell P E,Maddison J R.Conservative interpolation between volume meshes by local Galerkin projection[J].Computer Methods in Applied Mechanics and Engineering,2011,200(1/2/3/4):89–100. [26] Tomoyoshi O,Kyoji K.CFD simulation of flow in model pump sumps for detection of vortices[C].8th Asian International Fluid Machinery Conference.Yichang,2005. [27] Möller G,Detert M,Boes R M.Vortex-induced air entrainment rates at intakes[J].Journal of Hydraulic Engineering,2015,141(11):04015026. [28] Chakraborty N,Konstantinou I,Lipatnikov A.Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames[J].Physics of Fluids,2016,28(1):015109. [29] Huang Xianbei,Guo Qiang,Fang Tao,et al.Air-entrainment in hydraulic intakes with a vertical pipe:The mechanism and influence of pipe offset[J].International Journal of Multiphase Flow,2022,146:103866.

osid

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈