Analysis of Existing Tunnel Settlement Caused by Undercrossing Construction of Curved Metro Shield Tunnel
-
摘要: 相比直线线路盾构施工,新建曲线盾构下穿施工引起既有隧道沉降规律更为复杂,且相关研究较少。基于两阶段分析法研究新建曲线地铁盾构隧道下穿施工引起的既有隧道沉降。第1阶段,结合镜像法、修正Loganathan法和Mindlin解,考虑曲线盾构转弯过程中的转弯超挖间隙和弯道内外侧不平衡施工参数的影响,计算新建曲线盾构施工引起土体竖向位移的3维解;第2阶段,将土体竖向位移视为位移荷载,施加在既有隧道上,基于Pasternak地基理论和Timoshenko梁理论,构建能够同时考虑土体剪切效应和既有隧道剪切效应的既有隧道沉降控制方程,运用有限差分法对方程降阶并求解。最后,与工程实例对比验证理论和控制方程的正确性,并对影响既有隧道沉降的关键参数进行分析。结果表明:新建曲线地铁盾构隧道下穿施工引起的既有隧道沉降槽曲线具有非对称性,最大沉降位置位于弯道内侧1~2 m处,与未考虑曲线影响的计算结果相差较大。减小掘进路线的转弯半径R0会增加既有隧道沉降,弯道内侧沉降增速大于弯道外侧,一般要求R0不小于300 m;当R0大于600 m时,可视作直线隧道下穿。增大刀盘直径D′会增加既有隧道沉降,沉降增加速度也随D′的增大而增大,但增大D′对沉降槽曲线的偏移程度影响较小。增大新建隧道与既有隧道竖向间距Zc会减少既有隧道沉降。Abstract: Compared with the shield construction on straight lines, the settlement of existing tunnel caused by undercrossing construction of a curved metro shield tunnel is more complex and less studied. The settlement of the existing tunnel was analyzed using a two-stage analysis method. In the first stage, considering the effects of the over-excavation gap and the unbalanced construction parameters during the undercrossing, a three-dimensional solution of the tunnel-induced free ground settlement caused by the construction of a new curved shield was established using the mirror image method, modified Loganathan method and Mindlin solution. In the second stage, the tunnel-induced free ground settlement was considered as the displacement load imposed on the existing tunnel, and based on the Pasternak foundation and Timoshenko beam theory, a governing equation that can consider both soil and tunnel shear effects was established, and the finite difference method was used to reduce the order of the equation and solve it. The effectiveness of the governing equation was verified by engineering monitoring data, and the key parameters affecting the settlement of existing tunnels were analyzed. The results showed that the settlement groove of existing tunnels caused by the undercrossing construction of the new curved shield tunnel was asymmetrically distributed, and the maximum settlement position was located at 1~2 m inside the curve, which was different from the calculation results without considering the influence of the curve. The settlement of existing tunnels increased with the decrease of the radius of shield curve R0, and the settlement growth rate inside the curve was greater than that outside the curve, the general requirement was not less than 300 m. When R0 was greater than 600 m, it could be regarded as a straight tunnel. The settlement of existing tunnels also increased with the increase of the shield blade diametersD′, and the variational trend was presented obviously, but the impact on the settlement groove was small. The settlement of existing tunnels decreased with the increase of the vertical distance between the new tunnel and the existing tunnel Zc.
-
Keywords:
- curved shield tunnel /
- new tunnel /
- existing tunnel /
- mirror method
-
随着中国城市地铁网络的快速发展,新建地铁隧道难以避免下穿通过既有运营地铁隧道;同时,受周围建筑环境的影响,会将新建线路设计为曲线线路。曲线地铁盾构隧道下穿既有隧道施工期间,盾构转弯通过曲线线路时会对弯道内侧土体进行超挖,使既有隧道两侧产生的沉降不同,情况更为复杂。因此,研究曲线地铁盾构隧道下穿施工引起的既有隧道沉降具有重要的意义。
由于曲线盾构隧道施工的复杂性,目前该领域的相关研究较少。路林海[1]和Zhang[2]等利用数值模拟研究了曲线盾构隧道引起的地表沉降;孙捷城等[3]基于Mindlin解推导了曲线盾构开挖引起的地表变形公式;邓皇适[4]和Li[5]等结合镜像法[6]提出曲线盾构隧道施工引起地表沉降的简化理论。但以上研究均集中于研究地表沉降方面。
近年来,对于新建盾构下穿既有隧道方面的研究主要采用数值分析、模型试验和理论分析等方法。数值分析法是利用有限元[7]、离散元[8]和有限差分[9]等模拟软件建立仿真模型进行研究。模型试验法是通过建立室内模型模拟实际工程,测量结构的受力特性;按试验条件可划分为常重力模型试验[10]和离心模型试验[11-12]。理论分析法是利用数学和物理理论推导工程结构响应的相关公式进行研究,具有概念明确和易于应用的优点,被多数学者采用,例如:Klar等[13]利用连续弹性理论研究了新建隧道施工对临近既有管道的影响;张治国[14]和Zhang[15]等运用Winkler地基理论,研究了多种不同工况下新建隧道施工对既有隧道的影响;梁荣柱等[16]将既有隧道视为Timoshenko梁,计算过程考虑了既有隧道剪切刚度削减效应;可文海等[17]在计算过程中运用了能够考虑土体剪切效应的Pasternak地基模型,并分析了该模型不同剪切系数对既有隧道的影响;代仲海等[18]运用极限分析上限定理研究了盾构开挖面极限支护力。但上述文献均未见有对曲线盾构下穿既有隧道沉降展开研究。
鉴于此,首先,基于前人研究,引入镜像法和Mindlin解计算曲线盾构转弯超挖间隙和不平衡施工因素引起的额外土体位移,结合修正Loganathan法构建能够计算新建曲线盾构施工引起的3维土体竖向位移的模型。之后,将土体竖向位移视为位移荷载施加在既有隧道上,基于能够考虑剪切效应的Pasternak地基和Timoshenko梁理论构建关于既有隧道沉降的控制方程,运用有限差分法对方程降阶并求解;最后,通过与实际工程监测数据对比验证该理论方法的正确性。
1. 曲线地铁盾构隧道施工引起的土体竖向位移计算
1.1 计算模型及假定
根据上述分析与实际施工的情况,建立曲线地铁盾构隧道下穿施工期间的掘进模型,如图1所示。
图1中,x方向平行于既有隧道,y方向为盾构掘进的方向,z方向为隧道埋深的方向,H为刀盘中心处距地面距离,盾构开挖面位于y=0处的xoz平面。
将曲线地铁盾构隧道施工引起的作用于既有隧道上的土体竖向位移uz(x)分为3部分。第1部分,uz1(x)为盾构机外径与隧道衬砌外径之间的物理间隙带动周围土体向间隙移动而产生的土体位移,也称为地层损失;第2部分,uz2(x)为盾构机转弯过程中,由内侧超挖间隙造成的土体位移;第3部分,uz3(x)为施工过程中,由盾构不平衡开挖面推力、盾壳不平衡摩擦力及盾尾间隙注浆压力造成的土体位移。将3部分的土体位移进行叠加,即可得到曲线地铁盾构隧道掘进引起的土体竖向总位移uz(x):
$$ {u_{\textit{z}}}(x) = {u_{{\textit{z}}1}}(x) + {u_{{\textit{z}}2}}(x){{ + }}{u_{{\textit{z}}3}}(x) $$ (1) 为便于计算,根据前人研究经验[2],建立xyz空间坐标系,并做如下假定:
1)将土体视作均质线弹性半无限空间体,且不考虑排水固结的影响。
2)盾构开挖面附加推力受转弯的影响分布不均,以刀盘中心线为分界线,转弯内侧推力q1与外侧推力q2关系为q2=ξq1(ξ≥ 1),其中,ξ为推力差异系数。
3)盾壳摩擦力同样受转弯的影响分布不均,以新建隧道中线为分界线,转弯内侧摩擦力f1与转弯外侧摩擦力f2的关系为f2=ηf1(η≤ 1),η为摩擦力差异系数。
4)同步盾尾间隙注浆压力p沿盾尾管片圆周径向分布,影响范围为盾尾后方单环管片长度。
1.2 衬砌间隙引起的土体竖向位移计算
盾构与衬砌之间的间隙(地层损失)引起的土体竖向位移uz1(x)可采用Loganathan法[19]进行计算。Loganathan法可计算由盾构开挖引起的任意深度处土体的竖向位移,但该方法假设开挖面离计算点无穷远(y→∞),只能计算2维平面上的土体位移,故需要对公式进行修正。参考张金菊[20]的研究,本文基于Loganathan法推导出3维空间的土体竖向位移计算公式;推导过程中,由于本文计算模型中衬砌间隙发生在盾尾处,故将原公式中的y变换为y+L,如式(2)所示:
$$ \begin{aligned}[b] {u_{{\textit{z}}1}}(x) =& {R^2} \times \left\{ { - \frac{{{\textit{z}} - H}}{{{x^2} + {{({\textit{z}} - H)}^2}}} + } \right.\frac{{(3 - 4\nu )({\textit{z}}{\text{ + }}H)}}{{{x^2} + {{({\textit{z}}{\text{ + }}H)}^2}}} - \\& \left. {\frac{{2{\textit{z}}[{x^2} - {{({\textit{z}} + H)}^2}]}}{{{{[{x^2} + ({\textit{z}} + {H^2})]}^2}}}} \right\} \times \frac{{{\varepsilon _{x,{\textit{z}}}}}}{2}\left[ {1 - \frac{{y + L}}{{\sqrt {{x^2} + {{(y + L)}^2} + {H^2}} }}} \right] \end{aligned} $$ (2) 式中:x为新旧隧道交界处的横向水平距离;R为新建隧道的半径;z为既有隧道的埋深;ν为新建隧道所在地层的泊松比;εx,z为Loganathan等[19]定义的地层损失,可表示为
$\varepsilon_{x, {\textit{z}}}=\varepsilon_0 \cdot \exp \left[\dfrac{-1.38 x^2}{(H+R)^2}-\dfrac{0.69 {\textit{z}}^2}{H^2}\right]$ 。其中,$\varepsilon_0= \dfrac{4 g R+g^2}{4 R^2}$ ,g为Lee等[21]提出的间隙参数,g=Gp+$U_{3 \mathrm{D}}^* $ +ω,Gp为新建隧道管片与盾构外径之间的物理间隙,$U_{3 \mathrm{D}}^* $ 为开挖掌子面土体等效3维弹塑性变形,当使用泥水或土压盾构机时$U_{3 \mathrm{D}}^* $ =0,ω为考虑施工因素的参数。此外,Loganathan法是基于黏性土层建立的公式,需引入地层影响角
$\varphi $ 对εx,z进行修正[22],以将适用范围扩展至其余土层:$${\;\;\;\; \varepsilon _{x,{\textit{z}}}'{\text{ = }}{\varepsilon _0} \cdot \exp \left[ {\frac{{ - 3.12{x^2}}}{{{{(H\tan\; \varphi + R)}^2}}} - \frac{{0.69{{\textit{z}}^2}}}{{{H^2}}}} \right]} $$ (3) 将式(3)中的
$\varepsilon _{x,{\textit{z}}}' $ 代入式(2)中替换原εx,z即可获得由盾构与衬砌之间的间隙(地层损失)引起的土体竖向位移uz1(x)。1.3 弯道内侧超挖间隙引起的土体竖向位移计算
盾构转弯超挖空隙引起的土体竖向位移uz2(x)可采用镜像法进行计算。对于半径为ar的球形间隙(x0,y0,z0)和其镜像位置(x0,y0,–z0)虚设的同等大小体积膨胀在计算点(x,y,z)所产生的沉降Sz1与Sz2表达式为:
$$ {S _{{\textit{z}}1}} = - \frac{{{a_r}^3}}{3}\cdot \frac{{({\textit{z}} - {{\textit{z}}_0})}}{{{r_1}^3}} $$ (4) $$ {S _{{\textit{z}}{\text{2}}}} = \frac{{{a_r}^3}}{3}\cdot\frac{{({\textit{z}} + {{\textit{z}}_0})}}{{{r_2}^3}} $$ (5) 考虑实际边界条件,将式(4)、(5)产生的附加剪应力反向施加于地表,计算点(x,y,z)产生的沉降表达式Sz3为:
$$ \begin{aligned}[b] {S _{{\textit{z}}3}}{{ = }}& - \frac{{{a_r^3}}}{{\text{π}}}\mathop {\lim }\limits_{b \to \infty } \mathop {\lim }\limits_{e \to \infty } \int_{{y_0} - b}^{{y_0} + b} {\int_{{x_0} - e}^{{x_0} + e} {\left[ {\frac{{\textit{z}}}{{{r_3^3}}} + \frac{{(1 - 2\nu )}}{{{r_3}({r_3} + {\textit{z}})}}} \right]} } \times \\& \left\{ {\frac{{{{\textit{z}}_0}(u - {x_0})(x - u)}}{{{{\left[ {{{(u - {x_0})}^2} + {{(t - {y_0})}^2} + {{\textit{z}}_0}^2} \right]}^{5/2}}}}} \right. + \\& \left. {\frac{{{{\textit{z}}_0}(t - {y_0})(y - t)}}{{{{\left[ {{{(u - {x_0})}^2} + {{(t - {y_0})}^2} + {{\textit{z}}_0}^2} \right]}^{5/2}}}}} \right\}{\text{d}}u{\text{d}}t \end{aligned} $$ (6) 式(4)~(6)中:(x,y,z)为计算点的坐标;(x0,y0,z0)为空隙点的坐标;u、t为积分变量;b、e为y方向和x方向的积分范围;r1、r2、r3为空隙点距计算点(x,y,z)的距离,计算公式为
${r_1} = \sqrt {{{(x - {x_0})}^2} + {{(y - {y_0})}^2} + {{({\textit{z}} - {{\textit{z}}_0})}^2}}$ ,${r_2} = $ $\sqrt {{{(x - {x_0})}^2} + {{(y - {y_0})}^2} + {{({\textit{z}} + {{\textit{z}}_0})}^2}}$ ,${r_3} = \sqrt {{{(x - u)}^2} + {{(y - t)}^2} + {{\textit{z}}^2}}$ 。将Sz1、Sz2、Sz3叠加再除以空隙体积4πar3/3即可得到计算点(x,y,z)处总沉降Sz的表达式:
$$ {S _{\textit{z}}} = \left( {{S _{{\textit{z}}1}} + {S _{{\textit{z}}2}} + {S _{{\textit{z}}3}}} \right)\frac{3}{{4\text{π} {a_r^3}}} $$ (7) 获得单位体积空隙产生的土体沉降公式后,通过对盾构转弯内侧超挖的区域进行积分即可得该部分引起的土体沉降。取刀盘内任意位置一微元体进行分析,如图2所示。
图2中:R′为盾构刀盘半径;dA为刀盘一微元体的面积;r为微元体到刀盘中心点的距离;β为盾构超挖刀伸缩角度,通常为5°~10°;θ为计算微元体与刀盘中心水平线的夹角;δ为超挖量,郝润霞等[23]提出δ可按式(8)计算:
$$ {\;\;\;\;\;\;\delta {\text{ = }}\frac{{\sqrt {{{(2{R_0} + D' )}^2} + {L^2}} - (2{R_0} + D' )}}{2} }$$ (8) 式中,R0为盾构曲线半径,D′为盾构刀盘直径,L为盾壳长度。
由于原坐标系求解较为困难,需进行坐标变化,假设以刀盘中心(0,0,H)为原点,则空隙点(x0,y0,z0)坐标变化为:
$$ \left\{ \begin{gathered} {x_0} = r\cos \;\theta , \\ {y_0} = {y_0}{\text{,}} \\ {{\textit{z}}_0} = H - r\sin\; \theta \\ \end{gathered} \right. $$ (9) 将式(9)代入式(4)~(7),对Sz进行积分即可求得盾构转弯时内侧超挖空隙引起的土体竖向位移uz2(x):
$$ {u_{{\textit{z}}2}}(x) = \int_{{\text{π}}/2{\text{ + }}\beta }^{3{\text{π}} /2{{ - }}\beta } {\int_{R'}^{R' + \delta } {\int_{{{ - }}L}^0 {{S _{\textit{z}}}} } } {\text{d}}s'{\text{d}}r{\text{d}}\theta $$ (10) 式中,s′为计算点距盾构刀盘的距离(盾构机盾尾至刀盘方向)。
1.4 盾构施工因素引起的土体竖向位移计算
盾构施工工程中,由开挖面附加推力q、盾壳摩阻力f、盾尾间隙注浆压力p共同产生的uz3(x)可基于Mindlin解求出[24]。位于空间坐标(0,0,c)处的水平集中力Ph与竖向集中力Pv引起任意一点(x′,y′,z′)处的土体竖向位移wm1和wm2的计算公式为:
$$ \begin{aligned}[b] {w_{{\text{m}}1}} =& \frac{{{P_{\rm{h}}}y' }}{{16{\text{π}}G(1 - v)}}\left[ {\frac{{{\textit{z}}' - c}}{{{R_1^3}}} + \frac{{(3 - 4v)({\textit{z}}' - c)}}{{{R_2^3}}}} \right. - \\& \left. {\frac{{6c{\textit{z}}' ({\textit{z}}' + c)}}{{{R_2^5}}} + \frac{{4(1 - v)(1 - 2v)}}{{{R_2}({R_2} + {\textit{z}}' + c)}}} \right] \end{aligned} $$ (11) $$ \begin{aligned}[b] {w_{{\text{m}}2}} =& \frac{{{P_{\rm{v}}}}}{{16{\text{π}}G(1 - v)}}\left[ {\frac{{3 - 4v}}{{{R_1}}} + \frac{{8{{(1 - v)}^2} - (3 - v)}}{{{R_2}}}} \right. + \\& \left. {\frac{{{{({\textit{z}}' - c)}^2}}}{{{R_1^3}}} + \frac{{(3 - 4v){{({\textit{z}}' + c)}^2} - 2c{\textit{z}}' }}{{{R_2^3}}} + \frac{{6c{\textit{z}}' {{({\textit{z}}' + c)}^2}}}{{{R_2^5}}}} \right] \end{aligned} $$ (12) 式中,G为土体剪切模量,
${R_1} = \sqrt {x{ ^2}' + y{ ^2}' + {{({\textit{z}}' {{ - }}c)}^2}}$ ,${R_2} = \sqrt {x'{ ^2} + y'{ ^2} + {{({\textit{z}}' {\text{ + }}c)}^2}}$ ,c为集中力作用点至原点的距离。盾构开挖面附加推力q引起的土体竖向位移计算模型如图3所示。
图3中,刀盘上一微元体dA=rdrdθ,微元体上所受的集中力dPhq=qrdrdθ。以刀盘中心(0,0,H)为原点,对式(11)进行如式(13)所示的坐标变换:
$$ \left\{ \begin{gathered} x' = x - r\cos\; \theta , \\ y' = y, \\ {\textit{z}}' = {\textit{z}}, \\ c = H - r\sin\; \theta \\ \end{gathered} \right. $$ (13) 则可求出由dPhq引起(x,y,z)坐标空间体内的任意一点竖向位移dwmq,如式(14)所示:
$$ \begin{aligned}[b] {\text{d}}{w_{{\text{m}}q}} =& \frac{{y \cdot qr{\text{d}}r{\text{d}}\theta }}{{16{\text{π}}G(1 - v)}}\left[ {\frac{{{\textit{z}} - H + r\sin \;\theta }}{{{R_{q1}^3}}}{\text{ + }}} \right. \\& \frac{{4(1 - v)(1 - 2v)}}{{{R_{q2}}({R_{q2}} + {\textit{z}} + H - r\sin \;\theta )}} + \frac{{(3 - 4v)({\textit{z}} - H + r\sin \;\theta )}}{{{R_{q2}^3}}} - \\& \left. {\frac{{6(H - r\sin\; \theta ){\textit{z}}({\textit{z}} + H - r\sin \;\theta )}}{{{R_{q2}^5}}}} \right]\\[-19pt]\end{aligned} $$ (14) 式中,
$R_{q 1}=\sqrt{(x-r \cos\; \theta)^2+y^2+({\textit{z}}-H+r \sin\; \theta)^2}$ ,$R_{q 2}= \sqrt{(x-r \cos \;\theta)^2+y^2+({\textit{z}}+H-r \sin \;\theta)^2}$ 。对dwmq进行积分即可求出开挖面附加推力q引起的土体竖向位移uz3q(x):
$$ {\;\;\;\;\;{u_{{\textit{z}}3q}}(x) = \int_0^R {\int_{ - \frac{{\text{π }}}{2}}^{\frac{{\text{π}}}{2}} {{\text{d}}{w_{{\text{m}}q}}} } + \xi \int_0^R {\int_{\frac{{\text{π}}}{2}}^{\frac{{3{\text{π }}}}{2}} {{\text{d}}{w_{{\text{m}}q}}} }} $$ (15) 盾壳摩擦力f引起的土体竖向位移计算模型如图4所示。
图4中,盾壳上一微元体dA=R′dsdθ,微元体上所受的集中力dPhf=fR′dsdθ。以刀盘中心(0,0,H)为原点,对式(11)进行如式(16)的坐标变换:
$$ \left\{ \begin{gathered} x' = x - R' \cos \;\theta , \\ y' = y + s, \\ {\textit{z}}' = {\textit{z}}, \\ c = H - r\sin \;\theta \\ \end{gathered} \right. $$ (16) 则可求出由dPhf引起的空间体任意一点竖向位移dwmf,如式(17)所示:
$$ \begin{aligned}[b] {\text{d}}{w_{{\text{m}}f}} =& \frac{{(y{{ + }}s)fR' {\text{d}}s{\text{d}}\theta }}{{16{\text{π}}G(1 - v)}}\left[ {\frac{{{\textit{z}} - H + R' \sin \;\theta }}{{{R_{f1}^3}}}{\text{ + }}} \right. \\& \frac{{4(1 - v)(1 - 2v)}}{{{R_{f2}}({R_{f2}} + {\textit{z}} + H - r\sin \;\theta )}}{{ + }}\frac{{(3 - 4v)({\textit{z}} - H + R' \sin\; \theta )}}{{{R_{f2}^3}}} - \\& \left. {\frac{{6(H - R' \sin\; \theta ){\textit{z}}({\textit{z}} + H - R' \sin \;\theta )}}{{{R_{f2}^5}}}} \right] \\[-19pt]\end{aligned} $$ (17) 式中,
$R_{f 1}=\sqrt{\left(x-R^{\prime} \cos\; \theta\right)^2+(y+s)^2+\left({\textit{z}}-H+R^{\prime} \sin \;\theta\right)^2}$ ,$R_{f 2}=\sqrt{\left(x-R^{\prime} \cos\; \theta\right)^2+(y+s)^2+\left({\textit{z}}+H-R^{\prime} \sin \;\theta\right)^2}$ ,s为微元体至盾构刀盘的距离。对dwmf进行积分即可求出由盾壳摩擦力f引起的土体竖向位移uz3f (x):
$$ {\;\;\;\;\;\;\;\;\;{u_{{\textit{z}}3f}}(x) = \int_0^L {\int_{ - \frac{{\text{π }}}{2}}^{\frac{{\text{π}}}{2}} {{\text{d}}{w_{{\text{m}}f}}} } + \eta \int_0^L {\int_{\frac{{\text{π}}}{2}}^{\frac{{3{\text{π}}}}{2}} {{\text{d}}{w_{{\text{m}}f}}} }} $$ (18) 盾尾间隙注浆压力p引起的土体竖向位移计算模型如图5所示。
图5中:a为盾构注浆影响范围的长度,通常取单环管片的长度;盾尾注浆影响范围内微元体dA=R′dsdθ;微元体上所受的集中力dPp=pRdsdθ,可分解为水平分力dPhp与竖向分力dPvp,对于水平分力dPhp引起空间体内的竖向位移较小,本文不进行考虑。以刀盘中心(0,0,H)为原点,对式(12)进行如式(16)所示的坐标变换即可求出dPvp引起空间体内的任意一点位移dwmq,如式(19)所示:
$$ \begin{aligned}[b]& {\text{d}}{w_{{\text{m}}p}} = \frac{{pR' \sin\; \theta {\text{d}}s{\text{d}}\theta }}{{16{\text{π}}G(1 - v)}}\left[ {\frac{{3 - 4v}}{{{R_{p1}}}} + } \right.\frac{{{{({\textit{z}} - H + R' \sin\; \theta )}^2}}}{{{R_{p1}^3}}} + \\& \frac{{8{{(1 - v)}^2} - (3 - 4v)}}{{{R_{p2}}}} + \frac{{6{\textit{z}}(H - R' \sin\; \theta ){{({\textit{z}} + H - R' \sin \;\theta )}^2}}}{{{R_{p2}^5}}} + \\&\;\;\;\; \left. {\frac{{(3 - 4v){{({\textit{z}} + H - R' \sin \;\theta )}^2} - 2{\textit{z}}(H - R' \sin \;\theta )}}{{{R_{p2}^3}}}} \right]\\[-19pt] \end{aligned} $$ (19) 式中,
$R_{p {\rm{l}}}=\sqrt{\left(x-R^{\prime} \cos \;\theta\right)^2+(y+s)^2+\left({\textit{z}}-H+R^{\prime} \sin\; \theta\right)^2}$ ,$R_{p 2}=\sqrt{\left(x-R^{\prime} \cos\; \theta\right)^2+(y+s)^2+\left({\textit{z}}+H-R^{\prime} \sin \;\theta\right)^2}$ 。对dwmp进行积分即可求出由盾尾间隙注浆压力p引起的土体竖向位移uz3p(x):
$$ {u_{{\textit{z}}3p}}(x) = \int_L^{L + a} {\int_0^{2{\text{π}}} {{\text{d}}{w_{{\text{m}}p}}} } $$ (20) 将式(15)、(18)、(20)进行叠加即可获得由盾构施工因素引起的土体竖向位移uz3(x):
$$ {\;\;\;\;\;\;\;\;{u_{{\textit{z}}3}}(x) = {u_{{\textit{z}}3q}}(x) + {u_{{\textit{z}}3f}}(x) + {u_{{\textit{z}}3p}}(x)} $$ (21) 将式(2)、(10)、(21)代入式(1)即可获得曲线地铁盾构隧道掘进引起的作用于既有隧道上的土体纵向总位移uz(x)。
2. 土体与隧道相互作用分析
2.1 计算模型及假定
获得新建曲线地铁盾构隧道施工引起的土体竖向位移场uz(x)后,可将既有隧道处的土体位移视为位移荷载施加在既有隧道上,从而求出既有隧道的沉降。研究表明[16-17],Tiomoshenko梁能够考虑既有隧道的剪切效应,Pasternak地基能够考虑土体的连续性影响,均能够较好地模拟实际情况。本文结合Timoshenko梁和Pasternak地基建立土体与隧道相互作用计算模型(T–P模型),如图6所示。
为方便阅读,设wz(x)为既有隧道沉降,Wz(x)为地基反力。基于Pasternak地基理论,Wz(x)与Uz(x)分别为:
$${\quad\;\;\; {W_{\textit{z}}}(x) = k{w_{\textit{z}}}(x) - {G_{\text{p}}}\frac{{{{\text{d}}^2}{w_{\textit{z}}}(x)}}{{{\text{d}}{x^2}}}} $$ (22) $${\quad\;\;\; {U_{\textit{z}}}(x) = k{u_{\textit{z}}}(x) - {G_{\text{p}}}\frac{{{{\text{d}}^2}{u_{\textit{z}}}(x)}}{{{\text{d}}{x^2}}} }$$ (23) 式(22)~(23)中:k为地基基床系数,可采取Vesić[25]提出的公式计算,但通常认为采用Vesić基床系数的计算值大于实际值,应选取两倍或以上的计算值,即
$k = 2{k_{{\text{Vesić}}}} = \dfrac{{1.3{E_{\text{s}}}}}{{D(1 - {\nu ^2})}}\cdot\sqrt[\begin{subarray}{l} 12 \\ \\ \end{subarray} ]{{\dfrac{{{E_{\text{s}}}{D^4}}}{{{E_{\text{c}}}{I_{\text{c}}}}}}}$ ,其中,D为既有隧道直径,Es为既有隧道所在地层土体的弹性模量,EcIc为等效抗弯刚度;Gp为Pasternak地基剪切系数,可采用Tanahashi[26]提出的公式进行计算,${G_{\text{p}}}{\text{ = }}\dfrac{{{E_{\text{s}}}{H_{\text{p}}}}}{{6(1 + \nu )}}$ ,其中,Hp为Pasternak地基剪切层厚度,可按2.5D取值。为获得既有隧道在位移荷载Uz(x)作用下的沉降wz(x),取既有隧道中任意一微元体进行受力分析,建立平衡方程如下:
$$ {\;\;\;\;\;\;\;\;\;{W_{\textit{z}}}(x)D{\text{d}}x - {U_{\textit{z}}}(x)D{\text{d}}x - \frac{{{\text{d}}Q}}{{{\text{d}}x}}{\text{d}}x = 0 }$$ (24) $$ {\;\;\;\;Q{\text{d}}x - \frac{{{\text{d}}M}}{{{\text{d}}x}}{\text{d}}x + {W_{\textit{z}}}(x)D\frac{{{\text{d}}{x^2}}}{2} - {U_{\textit{z}}}(x)D\frac{{{\text{d}}{x^2}}}{2} = 0 }$$ (25) 式(24)~(25)中,Q为既有隧道微元附加剪力,M为既有隧道微元附加弯矩。
由于常规条件下附加剪力Q和附加弯矩M的获取较为困难,需将其转换为关于既有隧道沉降wz(x)的方程,根据Timoshenko梁理论,附加剪力Q、附加弯矩M的表达式为:
$$ Q = (\kappa GA)\left(\frac{{{\text{d}}{w_{\textit{z}}}(x)}}{{{\text{d}}x}} - \theta \right) $$ (26) $$ M = - ({E_{\text{c}}}{I_{\text{c}}})\frac{{{\text{d}}\theta }}{{{\text{d}}x}} $$ (27) 式(26)~(27)中:EcIc为既有隧道等效抗弯刚度;κGA为既有隧道等效剪切刚度,可按照文献[16]提出的方法计算,本文不再详述。联立式(22)~(27),省略高阶微量,可得到仅关于土体竖向位移uz(x)的既有隧道沉降wz(x)的控制方程:
$$ \begin{aligned}[b]& \frac{{{{\rm{d}}^4}w(x)}}{{{\rm{d}}{x^4}}} - \frac{{(\kappa GA){G_{\text{p}}}D + kD({E_{\text{c}}}{I_{\text{c}}})}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D)}}\cdot\frac{{{{\rm{d}}^2}w(x)}}{{{\rm{d}}{x^2}}}{{ + }} \\&\;\;\;\; \frac{{kD(\kappa GA)}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D)}}\cdot w(x) = \frac{{{G_{\text{p}}}D}}{{((\kappa GA) + {G_{\text{p}}}D)}}\cdot \frac{{{{\rm{d}}^4}u(x)}}{{{\rm{d}}{x^4}}} + \\& \frac{{kD(\kappa GA)}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D)}} \cdot u(x) - \frac{{(\kappa GA){G_{\text{p}}}D + kD({E_{\text{c}}}{I_{\text{c}}})}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D)}} \cdot \frac{{{{\rm{d}}^2}u(x)}}{{{\rm{d}}{x^2}}} \end{aligned} $$ (28) 2.2 既有隧道沉降的有限差分解
由于式(28)为4阶常微分方程,不便于直接求解,故采用有限差分法对其进行降阶处理。对既有隧道进行离散,划分为n个长度相等的单元,并在隧道两侧增加2个虚拟节点,每个单元长度为l,如图7所示。
利用有限差分标准格式对式(28)进行处理:
$$ \begin{aligned}[b] & \qquad \frac{{{w_{i + 2}} - 4{w_{i + 1}} + 6{w_i} - 4{w_{i - 1}} + {w_{i - 2}}}}{{{l^4}}} - \\&\qquad \frac{{(\kappa GA){G_{\text{p}}}D + kD({E_{\text{c}}}{I_{\text{c}}})}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D)}}\cdot \frac{{{w_{i + 1}} - 2{w_i} + {w_{i - 1}}}}{{{l^2}}}{{ + }} \\&\qquad \frac{{kD(\kappa GA)}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D)}}\cdot {w_i}= \frac{{{G_p}D}}{{((\kappa GA) + {G_{\text{p}}}D)}}\cdot \\& \frac{{{u_{i + 2}} - 4{u_{i + 1}} + 6{u_i} - 4{u_{i - 1}} + {u_{i - 2}}}}{{{l^4}}} + \frac{{kD(\kappa GA)}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D)}}\cdot {u_i} - \\& \qquad \frac{{(\kappa GA){G_{\text{p}}}D + kD({E_{\text{c}}}{I_{\text{c}}})}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D)}}\cdot \frac{{{u_{i + 1}} - 2{u_i} + {u_{i - 1}}}}{{{l^2}}}\\[-15pt]\end{aligned} $$ (29) 求解式(29)还需要w–1、w–2、wn+1、wn+2(当i=0或n)虚拟节点的表达式,可根据既有隧道边界条件获得。假设既有隧道足够长且隧道两端剪力和弯矩为0,既有隧道附加剪力Q和附加弯矩M关于沉降uz(x)的公式可联立式(22)~(27)获得,采用有限差分格式进行处理后为:
$$ \left\{ \begin{gathered} {Q_0} = {Q_n}{{ = }}0, \\ {M_0} = {M_n}{{ = }}0 \\ \end{gathered} \right. $$ (30) $$ \begin{aligned}[b] Q =& - \frac{{\left( {{E_{\text{c}}}{I_{\text{c}}}} \right)}}{{(\kappa GA)}}\cdot \Bigg[({G_{\text{p}}}D{\text{ + }}(\kappa GA))\cdot \\& \frac{{{w_{i + 2}} - 2{w_{i + 1}} + 2{w_{i - 1}} - {w_{i - 2}}}}{{2{l^3}}} - kD\cdot \frac{{{w_{i + 1}} - {w_{i - 1}}}}{{2l}} - \\& {G_{\text{p}}}D\cdot \frac{{{u_{i + 2}} - 2{u_{i + 1}} + 2{u_{i - 1}} - {u_{i - 2}}}}{{2{l^3}}} + kD\cdot \frac{{{u_{i + 1}} - {u_{i - 1}}}}{{2l}}\Bigg] \end{aligned} $$ (31) $$ \begin{aligned}[b] M =& - \frac{{\left( {{E_{\text{c}}}{I_{\text{c}}}} \right)}}{{(\kappa GA)}}\left[ {({G_{\text{p}}}D{\text{ + }}(\kappa GA))\cdot \frac{{{w_{i + 1}} - 2{w_i}{\text{ + }}{w_{i - 1}}}}{{{l^2}}}} \right. - \\& \left. {kD{w_i} - {G_{\text{p}}}D\cdot \frac{{{u_{i + 1}} - 2{u_i}{\text{ + }}{u_{i - 1}}}}{{{l^2}}} + kD{u_i}} \right] \\[-19pt] \end{aligned} $$ (32) 联立式(30)~(31)可得到既有隧道两端4个虚拟节点的表达式:
$$ \begin{aligned}[b] {w_{ - 1}} =& \left( {\frac{{kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}} + 2} \right){w_0} - {w_1} - \\& \frac{{2{G_{\text{p}}}D + kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}}\cdot {u_0} + \frac{{{G_{\text{p}}}D}}{{{G_{\text{p}}}D + (\kappa GA)}}\cdot ({u_1} + {u_{ - 1}}) \end{aligned} $$ (33) $$ \begin{aligned}[b] {w_{n + 1}} =& \left( {\frac{{kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}} + 2} \right){w_n} - {w_{n - 1}} - \\& \frac{{2{G_{\text{p}}}D + kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}}\cdot {u_n} + \frac{{{G_{\text{p}}}D}}{{{G_{\text{p}}}D + (\kappa GA)}}\cdot ({u_{n - 1}} + {u_{n + 1}}) \end{aligned} $$ (34) $$ \begin{aligned}[b] {w_{ - 2}} =& {w_2} - \left( {4 + \frac{{2kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}}} \right)\cdot {w_1}{\text{ + }} \\& \left( {\frac{{{k^2}{D^2}{l^4}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} + \frac{{4kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}} + 4} \right)\cdot {w_0} - \\& \left( {\frac{{2k{G_{\text{p}}}{D^2}{l^4} + {k^2}{D^2}{l^4}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} + \frac{{4{G_{\text{p}}}D + 2kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}}} \right)\cdot {u_0} + \\& \left( {\frac{{{k^2}{D^2}{l^4}}}{{{{({G_p}D + (\kappa GA))}^2}}} + \frac{{{\text{4}}{G_{\text{p}}}D{\text{ + }}kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}}} \right)\cdot {u_1} + \\& \left( {\frac{{{k^2}{D^2}{l^4}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} - \frac{{kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}}} \right)\cdot {u_{ - 1}} + \\& \frac{{{G_{\text{p}}}D}}{{{G_{\text{p}}}D + (\kappa GA)}}\cdot \left( {{u_2} - {u_{ - 2}}} \right)\\[-15pt] \end{aligned} $$ (35) $$ \begin{aligned}[b] {w_{n + 2}} =& {w_{n - 2}} - \left( {4 + \frac{{2kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}}} \right)\cdot {w_{n - 1}} + \\& \left( {\frac{{{k^2}{D^2}{l^4}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} + \frac{{4kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}} + 4} \right)\cdot {w_n} - \\& \left( {\frac{{2k{G_{\text{p}}}{D^2}{l^4} + {k^2}{D^2}{l^4}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} + \frac{{4{G_{\text{p}}}D + 2kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}}} \right)\cdot {u_n} + \\& \left( {\frac{{{k^2}{D^2}{l^4}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} + \frac{{4{G_{\text{p}}}D + kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}}} \right)\cdot {u_{n - 1}} + \\& \left( {\frac{{{k^2}{D^2}{l^4}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} - \frac{{kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}}} \right)\cdot {u_{n + 1}} + \\& \frac{{{G_{\text{p}}}D}}{{{G_{\text{p}}}D + (\kappa GA)}}\cdot \left( {{u_{n - 2}} - {u_{n + 2}}} \right)\\[-15pt] \end{aligned} $$ (36) 将式(33)~(36)代入式(29)并整理成矩阵模式:
$$ {\;\;\;\;\;({{\boldsymbol{\psi }}_1} - {{\boldsymbol{\psi }}_2} + {{\boldsymbol{\psi }}_3}){\boldsymbol{w}} = {{\boldsymbol{U}}_1} + {{\boldsymbol{U}}_2} - {{\boldsymbol{U}}_3}{{ + }}{{\boldsymbol{U}}_4}} $$ (37) 式中,w为既有隧道沉降wz(x)整理而成的向量,
${\boldsymbol{\psi}}_1 $ 、${\boldsymbol{\psi}}_2 $ 、${\boldsymbol{\psi}}_3 $ 为向量w的系数矩阵,U1、U2、U3、U4为作用于既有隧道上的土体位移向量。各矩阵、向量的表达式如下:$$ {{\boldsymbol{\psi }}_1} = \frac{1}{{{l^4}}}{\left[ {\begin{array}{*{20}{c}} {{\varDelta _1}}&{{\varDelta _2}}&2&{}&{}&{}&{} \\ {{\varDelta _3}}&5&{ - 4}&1&{}&{}&{} \\ 1&{ - 4}&6&{ - 4}&1&{}&{} \\ {}& \ddots & \ddots & \ddots & \ddots & \ddots &{} \\ {}&{}&1&{ - 4}&6&{ - 4}&1 \\ {}&{}&{}&1&{ - 4}&5&{{\varDelta _3}} \\ {}&{}&{}&{}&2&{{\varDelta _2}}&{{\varDelta _1}} \end{array}} \right]_{(n + 1) \times (n + 1)}} $$ (38) $$ \begin{aligned}[b] {{\boldsymbol{\psi }}_2} =& \frac{{(\kappa GA){G_{\text{p}}}D + kD({E_{\text{c}}}{I_{\text{c}}})}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D){l^2}}} \times \\& {\left[ {\begin{array}{*{20}{c}} {{\varDelta _4}}&{}&{}&{}&{}&{}&{} \\ 1&{ - 2}&1&{}&{}&{}&{} \\ {}&1&{ - 2}&1&{}&{}&{} \\ {}&{}& \ddots & \ddots & \ddots &{}&{} \\ {}&{}&{}&1&{ - 2}&1&{} \\ {}&{}&{}&{}&1&{ - 2}&1 \\ {}&{}&{}&{}&{}&{}&{{\varDelta _4}} \end{array}} \right]_{(n + 1) \times (n + 1)}} \end{aligned} $$ (39) $${\;\;\;\;\;\; {{\boldsymbol{\psi }}_3} = \frac{{kD(\kappa GA)}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D)}} \times {{\boldsymbol{E}}_{n + 1}} }$$ (40) $$ {\;\;\;\;\;\;{\boldsymbol{w}} = ( \begin{array}{*{20}{c}} {{w_0}}& \cdots &{{w_i}}& \cdots &{{w_n}} \end{array} ) ^{{\rm{T}}} _{(n + 1) \times 1}} $$ (41) $$ \begin{aligned}[b]& \qquad {{\boldsymbol{U}}_1} =\\& \frac{{{G_{\text{p}}}D}}{{((\kappa GA) + {G_{\text{p}}}D){l^4}}}\times {\left( {\begin{array}{*{20}{c}} {{u_2} - 4{u_1} + 6{u_0} - 4{u_{ - 1}} + {u_{ - 2}}} \\ {{u_3} - 4{u_2} + 6{u_1} - 4{u_0} + {u_{ - 1}}} \\ \vdots \\ {{u_{n + 1}} - 4{u_n} + 6{u_{n - 1}} - 4{u_{n - 2}} + {u_{n - 3}}} \\ {{u_{n + 2}} - 4{u_{n + 1}} + 6{u_n} - 4{u_{n - 1}} + {u_{n - 2}}} \end{array}} \right)_{(n + 1) \times 1}}\end{aligned} $$ (42) $$ {{\boldsymbol{U}}_2} = \frac{{kD(\kappa GA)}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D)}}\times {( {\begin{array}{*{20}{c}} {{u_0}}& {{u_1}}& \cdots & {{u_{n - 1}}}& {{u_n}} \end{array}} )^{\rm{T}}}_{(n + 1) \times 1} $$ (43) $$ {{\boldsymbol{U}}_3} = \frac{{(\kappa GA){G_{\text{p}}}D + kD({E_{\text{c}}}{I_{\text{c}}})}}{{({E_{\text{c}}}{I_{\text{c}}})((\kappa GA) + {G_{\text{p}}}D){l^2}}}\times {\left( {\begin{array}{*{20}{c}} {{u_1} - 2{u_0} + {u_{ - 1}}} \\ {{u_2} - 2{u_1} + {u_0}} \\ \vdots \\ {{u_n} - 2{u_{n - 1}} + {u_{n - 2}}} \\ {{u_{n + 1}} - 2{u_n} + {u_{n - 1}}} \end{array}} \right)_{(n + 1) \times 1}} $$ (44) $$ {{\boldsymbol{U}}_{\text{4}}} = {\left( {\begin{array}{*{20}{c}} {{\varOmega _{\text{1}}}}&{{\varOmega _{\text{2}}}}&0& \cdots &0&{{\varOmega _{\text{3}}}}&{{\varOmega _{\text{4}}}} \end{array}} \right)^{{\rm{T}}} }_{(n + {\text{1}}) \times {\text{1}}} $$ (45) 式(38)~(45)中,En+1为n+1阶单位矩阵,其余各参数为:
$$ \begin{aligned}[b]& {\varOmega _{\text{1}}} = - \frac{{8{G_{\text{p}}}D + 4kD{l^2}}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}\cdot {u_0} + \frac{{4{G_{\text{p}}}D}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}\cdot ({u_1} + {u_{ - 1}}) + \\&\qquad \left( {\frac{{2k{G_{\text{p}}}{D^2} + {k^2}{D^2}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} + \frac{{4{G_{\text{p}}}D + 2kD{l^2}}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}} \right)\cdot {u_0} - \\&\qquad \left( {\frac{{{k^2}{D^2}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} + \frac{{4{G_{\text{p}}}D + kD{l^2}}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}} \right)\cdot{u_1} - \\&\qquad \left( {\frac{{{k^2}{D^2}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} - \frac{{kD}}{{({G_{\text{p}}}D + (\kappa GA)){l^2}}}} \right)\cdot {u_{ - 1}} - \\&\qquad \frac{{{G_{\text{p}}}D}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}\cdot \left( {{u_2} - {u_{ - 2}}} \right) - \\& \frac{{(\kappa GA)(2{G_{\text{p}}}^2{D^2} + k{G_{\text{p}}}{D^2}{l^2}) + {{({E_{\text{c}}}{I_{\text{c}}})}}(2k{G_{\text{p}}}{D^2} + {k^2}{D^2}{l^2})}}{{{{({E_{\text{c}}}{I_{\text{c}}})}}{{({G_{\text{p}}}D + (\kappa GA))}^2}{l^2}}}\cdot {u_0} + \\&\qquad \frac{{(\kappa GA){G_{\text{p}}}^2{D^2} + k{G_{\text{p}}}{D^2}{{({E_{\text{c}}}{I_{\text{c}}})}}}}{{{{({E_{\text{c}}}{I_{\text{c}}})}}{{({G_{\text{p}}}D + (\kappa GA))}^2}{l^2}}}\cdot \left( {{u_1}{\text{ + }}{u_{ - 1}}} \right) \text{,} \end{aligned} $$ $$ {\varOmega _2}{\text{ = }}\frac{{2{G_{\text{p}}}D + kD{l^2}}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}\cdot {u_0} - \frac{{{G_{\text{p}}}D}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}\cdot ({u_1} + {u_{ - 1}}) \text{,} $$ $$ {\varOmega _3}{\text{ = }}\frac{{2{G_p}D + kD{l^2}}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}\cdot {u_n} - \frac{{{G_{\text{p}}}D}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}\cdot ({u_{n - 1}} + {u_{n + 1}}) \text{,} $$ $$ \begin{aligned}[b]& {\varOmega _4} = - \frac{{8{G_{\text{p}}}D + 4kD{l^2}}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}} \cdot {u_n} + \frac{{4{G_{\text{p}}}D}}{{{G_{\text{p}}}D + (\kappa GA){l^4}}}\cdot ({u_{n - 1}} + {u_{n + 1}}) + \\&\qquad \left( {\frac{{2k{G_{\text{p}}}{D^2} + {k^2}{D^2}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} + \frac{{4{G_{\text{p}}}D + 2kD{l^2}}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}} \right)\cdot {u_n} - \end{aligned}$$ $$ \begin{aligned}[b]& \qquad \left( {\frac{{{k^2}{D^2}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} + \frac{{4{G_{\text{p}}}D + kD{l^2}}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}} \right)\cdot{u_{n - 1}} - \\&\qquad \left( {\frac{{{k^2}{D^2}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} - \frac{{kD}}{{({G_{\text{p}}}D + (\kappa GA)){l^2}}}} \right)\cdot{u_{n + 1}} - \\&\qquad \frac{{{G_{\text{p}}}D}}{{({G_{\text{p}}}D + (\kappa GA)){l^4}}}\cdot \left( {{u_{n - 2}} - {u_{n + 2}}} \right) - \\& \frac{{(\kappa GA)(2{G_{\text{p}}}^2{D^2} + k{G_{\text{p}}}{D^2}{l^2}) + {{({E_{\text{c}}}{I_{\text{c}}})}}(2k{G_{\text{p}}}{D^2} + {k^2}{D^2}{l^2})}}{{{{({E_{\text{c}}}{I_{\text{c}}})}}{{({G_{\text{p}}}D + (\kappa GA))}^2}{l^2}}}\cdot{u_n} + \\&\qquad \frac{{(\kappa GA){G_{\text{p}}}^2{D^2} + k{G_p}{D^2}{{({E_{\text{c}}}{I_{\text{c}}})}}}}{{{{({E_{\text{c}}}{I_{\text{c}}})}}{{({G_{\text{p}}}D + (\kappa GA))}^2}{l^2}}}\cdot\left( {{u_{n - 1}} + {u_{n + 1}}} \right) \text{,} \end{aligned}$$ $$\begin{aligned}[b] & {\varDelta _1} = \frac{{{k^2}{D^2}{l^4}}}{{{{({G_{\text{p}}}D + (\kappa GA))}^2}}} + 2 \text{,} {\varDelta _2} = - \frac{{2kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}} - 4 \text{,} \\&\quad {\varDelta _3} = \frac{{kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}} - 2 \text{,} {\varDelta _4} = \frac{{kD{l^2}}}{{{G_{\text{p}}}D + (\kappa GA)}} 。\end{aligned}$$ 求解式(37)即可求得既有隧道的沉降向量w。
3. 实例验证
南宁某新建地铁盾构下穿既有运营地铁隧道区间线路为曲线,转弯半径R0为300.00 m,采用泥水盾构机进行施工,盾构刀盘直径D′为6.28 m,盾体的长度L为8.47 m;新建隧道埋深约为25.20 m,半径R为3.00 m,单环管片长度为1.20 m;所处的地层由圆砾和泥岩组成,平均泊松比ν为0.29,平均土体剪切模量G为26.52 MPa。
既有地铁隧道埋深约为13.44 m,所在地层主要由粉土组成,土体弹性模量Es为14.6 MPa;既有隧道管片宽度为1.5 m,采用C50混凝土和HRB400钢筋预预制,既有隧道等效抗弯刚度(EcIc)为9.48×104 MN·m,等效剪切刚度(κGA)为3.35×103 MN/m。
结合该项目施工的实际情况,各参数取值为下穿区间段的平均值,盾构开挖面推力q为97 kPa,盾壳摩擦力f为80 kPa,盾尾间隙注浆压力p为270 kPa,开挖面推力差异系数ξ为1.1,盾壳摩擦力差异系数η为0.9;参考魏纲[27]对于不同地区地层损失率取值的研究,地层损失率ε0取为0.2%;其余相关计算参数如表1所示。
表 1 计算参数Table 1 Calculated parametersδ/m k/(MN·m–3) Gp/(MN·m–1) $\varphi $/(°) 0.0296 3.18 26.84 41 选取计算盾构刀盘到达既有隧道前8环(9.6 m)与盾尾离开既有隧道4环(4.8 m)的既有隧道沉降,模拟盾构穿越前、后的工况,结果见图8、9。为方便对比,对第2节中计算的总位移uz(x)进行拆分,分别将盾构施工过程中开挖面推力、盾壳摩擦力、注浆压力产生的土体位移单独视为位移荷载施加在既有隧道上计算其沉降,并与不考虑曲线效应的盾构下穿既有隧道沉降计算值和工程实际监测值进行对比。
由图8可知:盾构到达既有隧道前9.6 m时,既有隧道产生了–0.48~0.20 mm的竖向位移,最大位移为–0.48 m。本文方法计算的既有隧道位移均为沉降,最大沉降值为–0.51 mm,位于穿越中心左侧2 m处,沉降曲线为非对称分布。单独作用于既有隧道上的位移荷载中,uz3(x)包括开挖面附加推力、盾壳摩擦力、盾尾间隙注浆压力,均使既有隧道产生隆起;地层损失uz1(x)和超挖间隙uz2(x)使既有隧道产生沉降,且对既有隧道的影响大于uz3(x)。对比不考虑曲线影响的计算结果可以发现,受uz3(x)的影响,未考虑曲线盾构效应下的既有隧道变形整体呈现出隆起的现象,与监测值和本文方法相差较大。本文方法部分超挖间隙造成的沉降抵消了uz3(x)产生的隆起,使隧道总体呈现出沉降的现象;受监测误差影响,既有隧道相邻监测点沉降值出现了上下波动的情况,但总体分布趋势仍为沉降,与本文方法的计算曲线较为吻合。
由图9可知:盾构穿越后相比穿越前,既有隧道产生了更大的沉降,转弯内侧沉降大于外侧,最大监测沉降值为–3.02 mm。盾构穿越后,开挖面推力和盾壳摩擦力使既有隧道产生沉降,盾尾间隙注浆压力仍使既有隧道隆起,隆起值有所增加;地层损失和超挖间隙引起的沉降相比穿越前大幅增加,成为影响既有隧道沉降的主要因素。图9中给出的未考虑曲线盾构影响的既有隧道最大沉降值为–1.82 mm,位于穿越中心,不符合监测沉降分布规律。本文方法的沉降曲线分布具有非对称性,转弯内侧沉降值大于外侧,最大沉降值为–2.89 mm,位于距新旧隧道交界处1~2 m之间,与监测值分布规律较吻合。
此外,图9中本文方法计算曲线的沉降槽宽度略大于监测值,主要是由于本文方法假设土体为线弹性空间体,与实际有一定差异。同时,计算曲线盾构超挖间隙的镜像法通常会高估沉降槽曲线宽度[12],但总的来说,相比仅考虑地层损失的传统方法,本文方法能更好地反映新建曲线盾构下穿施工引起的既有隧道沉降变化规律。
4. 既有隧道沉降影响因素分析
为进一步研究新建曲线地铁盾构隧道下穿引起的既有隧道沉降规律,选取既有隧道影响较大的穿越后工况,针对转弯半径R0、盾构刀盘直径D′、新建隧道外径与既有隧道外径之间的竖向间距Zc等参数进行分析;分析过程采用上述案例中的参数,在分析某一参数时,其余参数保持不变。
4.1 新建曲线盾构地铁隧道转弯半径R0的影响
取转弯半径R0为150、300、450、600、750 m进行计算,并与未考虑盾构曲线效应的计算结果进行对比,如图10所示。由图10可知:随着转弯半径R0的减小,既有隧道的沉降逐渐增加,且转弯内侧的沉降值增加幅度高于转弯外侧。工程中,新建盾构线路的曲线半径R0多数为300、450 m。当R0=300~450 m时,隧道最大沉降值与图10中不考虑曲线盾构影响(R0→∞)时的最大沉降值分别相差36.7%和28%;取既有隧道距穿越中心距离为–20 m(弯道内侧)和20 m(弯道外侧)处的沉降值进行对比,R0=300、450 m时,既有隧道位于弯道内侧和弯道外侧的沉降值分别相差22.7%和17.8%。可见新建曲线盾构下穿施工引起既有隧道沉降与直线盾构下穿存在较大差距,本文理论计算曲线盾构下穿工况更具优势,而现有理论计算结果可能会忽略超挖间隙产生的额外土体位移而低估既有隧道整体和弯道内侧处的沉降。
值得注意的是,当R0从300减小至150 m时,既有隧道沉降值增加的幅度明显提升,最大沉降值增加了36%,弯道内侧和外侧的沉降值相差提升至31.6%;当R0为750 m时,既有隧道弯道内侧和外侧的沉降差距较小,与未考虑盾构曲线影响所计算的沉降也相差较小。因此,工程中,当R0大于600 m时,可以忽略曲线盾构超挖的影响,即视为直线盾构下穿施工;特殊情况,R0设计小于300 m时,应提高既有隧道的监控等级。
此外,由图10还可以看出,转弯半径R0的变化并未改变既有隧道的最大沉降值位置。为进一步研究该现象,将转弯内侧超挖间隙引起的土体位移uz2(x)单独视为位移荷载施加在既有隧道上,计算不同转弯半径R0下的既有隧道沉降,如图11所示。
与图10类似,图11中超挖间隙引起的既有隧道最大沉降位置并未随转弯半径的增大而改变,均位于新旧隧道交界处左侧约3 m处。可见转弯半径的变化不会影响既有隧道沉降槽的偏移程度。
4.2 新建曲线盾构刀盘直径D′的影响
取盾构刀盘直径D′为4.28、6.28、8.28、10.28、12.28 m进行计算,既有隧道沉降计算结果如图12所示。
由图12可知:随着盾构刀盘直径D′的增加,既有隧道沉降随之增加,且增加的幅度逐渐变大。D′从10.28 m增大至12.28 m时,最大沉降值增加了34.9%;D′从10.28 m增大至12.28 m时,最大沉降值增加了34.9%;既有隧道沉降槽偏移程度变化不明显,最大沉降位置均位于新旧隧道交界处左侧1~2 m处。为此,同样对uz(x)进行拆分,将uz1(x)和uz2(x)单独视作位移荷载施加在既有隧道上,计算不同刀盘直径D′时既有隧道的沉降,如图13和14所示。
由图13、14可知:随着刀盘直径D′的增大,由uz1(x)和uz2(x)引起的既有隧道的沉降逐渐增加,uz2的沉降槽偏移程度逐渐增大,最大沉降位置逐渐偏移至新旧隧道交界处左侧5 m处;uz2(x)引起的沉降增加幅度较小,而uz1(x)引起的沉降增加幅度较大,随着刀盘直径D′的增加,沉降值逐渐远大于uz2(x)。因此,受uz1(x)的影响,土体总沉降uz(x)引起的既有隧道沉降槽变化程度不明显。
4.3 新建隧道与既有隧道竖向间距Zc的影响
取新建隧道轴线处埋深为10 m,新建隧道与既有隧道的竖向间距Zc为0.5D、1D、1.5D、2D计算既有隧道沉降,结果如图15所示。
由图15可知:随着新建隧道与既有隧道轴线之间的竖向间距Zc增大,穿越后的既有隧道的沉降逐渐减小,每增加0.5D,沉降减小约13%;此外,既有隧道沉降槽的偏移程度不受Zc的影响。
5. 结 论
本文推导了新建曲线地铁盾构隧道下穿施工引起的既有隧道沉降的计算公式,并将计算结果与工程实例进行了对比,验证了公式的正确性;分析了影响既有隧道沉降的关键参数,得到如下结论:
1)受盾构转弯超挖间隙和转弯内外侧不平衡施工因素的影响,曲线地铁盾构隧道下穿施工引起的既有隧道沉降为非对称曲线,曲线盾构转弯内侧沉降大于外侧,最大沉降位置位于弯道内侧1~2 m处。
2)减小盾构转弯半径会导致既有隧道沉降增加,既有隧道弯道内侧处的沉降增速大于弯道外侧;转弯半径从300 m减小至150 m时,既有隧道沉降大幅增加;对于转弯半径小于300 m的工程应重点监测。
3)盾构转弯半径大于600 m时,既有隧道沉降与未考虑盾构曲线影响所计算的沉降相差较小,可视作直线盾构下穿施工。
4)增大盾构刀盘直径会导致下穿后的既有隧道沉降增加,且变化趋势愈发增大。既有隧道沉降槽偏移程度受盾构刀盘直径变化的影响较小,穿越后的最大沉降值位置仍位于转弯内侧1~2 m处。
5)增大新建隧道与既有隧道竖向间距会减少既有隧道沉降,每增加0.5D,沉降减少约13%。
-
表 1 计算参数
Table 1 Calculated parameters
δ/m k/(MN·m–3) Gp/(MN·m–1) $\varphi $/(°) 0.0296 3.18 26.84 41 -
[1] 路林海,孙捷城,周国锋,等.黏性土地层曲线盾构施工地表沉降预测研究[J].铁道工程学报,2018,35(5):99–105. doi: 10.3969/j.issn.1006-2106.2018.05.017 Lu Linhai,Sun Jiecheng,Zhou Guofeng,et al.Research on the surface deformation prediction for curved shield constructionin clay stratum[J].Journal of Railway Engineering Society,2018,35(5):99–105 doi: 10.3969/j.issn.1006-2106.2018.05.017 [2] Zhang Mingju,Li Shaohua,Li Pengfei.Numerical analysis of ground displacement and segmental stress and influence of yaw excavation loadings for a curved shield tunnel[J].Computers and Geotechnics,2020,118:103325. doi: 10.1016/j.compgeo.2019.103325 [3] 孙捷城,路林海,王国富,等.小半径曲线盾构隧道掘进施工地表变形计算[J].中国铁道科学,2019,40(5):63–72. doi: 10.3969/j.issn.1001-4632.2019.05.09 Sun Jiecheng,Lu Linhai,Wang Guofu,et al.Calculation method of surface deformation induced by small radius curve shield tunneling construcion[J].China Railway Science,2019,40(5):63–72 doi: 10.3969/j.issn.1001-4632.2019.05.09 [4] 邓皇适,傅鹤林,史越.小转弯半径曲线盾构隧道开挖引发地表沉降计算[J].岩土工程学报,2021,43(1):165–173. doi: 10.11779/CJGE202101019 Deng Huangshi,Fu Helin,Shi Yue.Calculation of surface settlement caused by excavation of shield tunnel with small turning radius[J].Chinese Journal of Geotechnical Engineering,2021,43(1):165–173 doi: 10.11779/CJGE202101019 [5] Li Shaohua,Zhang Mingju,Li Pengfei.Analytical solutions to ground settlement induced by ground loss and construction loadings during curved shield tunneling[J].Journal of Zhejiang University(Science A),2021,22(4):296–313. doi: 10.1631/jzus.A2000120 [6] Sagaseta C.Analysis of undrained soil deformation due to ground loss[J].Geotechnique,1987,37(3):301–320. doi: 10.1680/geot.1987.37.3.301 [7] Avgerinos V,Potts D M,Standing J R.Numerical investigation of the effects of tunnelling on existing tunnels[J].Géotechnique,2017,67(9):808–822. doi: 10.1680/jgeot.SiP17.P.103 [8] 张孟喜,张梓升,王维,等.正交下穿盾构开挖面失稳的离散元分析[J].上海交通大学学报,2018,52(12):1594–1602. doi: 10.16183/j.cnki.jsjtu.2018.12.008 Zhang Mengxi,Zhang Zisheng,Wang Wei,et al.Discrete element analysis for instability of undercrossing shield tunnel face[J].Journal of Shanghai Jiaotong University,2018,52(12):1594–1602 doi: 10.16183/j.cnki.jsjtu.2018.12.008 [9] Do N A,Dias D,Oreste P,et al.Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground[J].Tunnelling and Underground Space Technology,2014,42:40–51. doi: 10.1016/j.tust.2014.02.001 [10] 何川,苏宗贤,曾东洋.地铁盾构隧道重叠下穿施工对上方已建隧道的影响[J].土木工程学报,2008,41(3):91–98. doi: 10.3321/j.issn:1000-131X.2008.03.015 He Chuan,Su Zongxian,Zeng Dongyang.Influence of metro shield tunneling on existing tunnel dir ectly above[J].China Civil Engineering Journal,2008,41(3):91–98 doi: 10.3321/j.issn:1000-131X.2008.03.015 [11] 张晓清,张孟喜,李林,等.多线叠交盾构隧道近距离穿越施工扰动机制研究[J].岩土力学,2017,38(4):1133–1140. doi: 10.16285/j.rsm.2017.04.026 Zhang Xiaoqing,Zhang Mengxi,Li Lin,et al.Mechanism of approaching construction disturbance caused by multi-line overlapped shield tunnelling[J].Rock and Soil Mechanics,2017,38(4):1133–1140 doi: 10.16285/j.rsm.2017.04.026 [12] 金大龙,袁大军,韦家昕,等.小净距隧道群下穿既有运营隧道离心模型试验研究[J].岩土工程学报,2018,40(8):1507–1514. doi: 10.11779/CJGE20180 Jin Dalong,Yuan Dajun,Wei Jiaxin,et al.Centrifugal model test of group tunneling with small spacing beneath existing tunnels[J].Chinese Journal of Geotechnical Engineering,2018,40(8):1507–1514 doi: 10.11779/CJGE20180 [13] Klar A,Vorster T E B,Soga K,et al.Soil–pipe interaction due to tunnelling:Comparison between Winkler and elastic continuum solutions[J].Geotechnique,2005,55(6):461–466. doi: 10.1680/geot.2005.55.6.461 [14] 张治国,黄茂松,王卫东.邻近开挖对既有软土隧道的影响[J].岩土力学,2009,30(5):1373–1380. doi: 10.3969/j.issn.1000-7598.2009.05.033 Zhang Zhiguo,Huang Maosong,Wang Weidong.Responses of existing tunnels induced by adjacent excavation in soft soils[J].Rock and Soil Mechanics,2009,30(5):1373–1380 doi: 10.3969/j.issn.1000-7598.2009.05.033 [15] Zhang Zhiguo,Huang Maosong.Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil[J].Computers and Geotechnics,2014,56:121–132. doi: 10.1016/j.compgeo.2013.11.008 [16] 梁荣柱,宗梦繁,康成,等.考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J].浙江大学学报(工学版),2018,52(3):420–430. doi: 10.3785/j.issn.1008-973X.2018.03.002 Liang Rongzhu,Zong Mengfan,Kang Cheng,et al.Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect[J].Journal of Zhejiang University(Engineering Science),2018,52(3):420–430 doi: 10.3785/j.issn.1008-973X.2018.03.002 [17] 可文海,管凌霄,刘东海,等.盾构隧道下穿管道施工引起的管–土相互作用研究[J].岩土力学,2020,41(1):221–228. doi: 10.16285/j.rsm.2018.2317 Ke Wenhai,Guan Lingxiao,Liu Donghai,et al.Research on upper pipeline–soil interaction induced by shield tunnelling[J].Rock and Soil Mechanics,2020,41(1):221–228 doi: 10.16285/j.rsm.2018.2317 [18] 代仲海,胡再强.复合地层盾构开挖面极限支护力上限分析[J].工程科学与技术,2021,53(2):95–102. doi: 10.15961/j.jsuese.202000008 Dai Zhonghai,Hu Zaiqiang.Upper bound limit analysis of limit support pressure for shield excavation face incomposite ground[J].Advanced Engineering Sciences,2021,53(2):95–102 doi: 10.15961/j.jsuese.202000008 [19] Loganathan N,Poulos H G.Analytical prediction for tunneling-induced ground movements in clays[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(9):846–856. doi: 10.1061/(ASCE)1090-0241(1998)124:9(846 [20] 张金菊.盾构隧道引起土体变形分析研究[D].杭州:浙江大学,2006:26–27. Zhang Jinju.Study on deformation analysis induced by shield tunnel[D].Hangzhou:Zhejiang University,2006:26–27. [21] Lee K M,Rowe R K,Lo K Y.Subsidence owing to tunnelling.I.Estimating the gap parameter[J].Canadian Geotechnical Journal,1992,29(6):929–940. doi: 10.1139/t92-104 [22] ChI S Y,Chern J C,Lin C C.Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model[J].Tunnelling and Underground Space Technology,2001,16(3):159–165. doi: 10.1016/S0886-7798(01)00048-7 [23] 郝润霞.软土地区曲线段盾构隧道超挖量与注浆量分析[J].地下空间与工程学报,2013,9(5):1132–1136. Hao Runxia.Analysis of over-excavated volume and synchronous grouting volume for the shield tunnel at curved section in soft soil area[J].Chinese Journal of Underground Space and Engineering,2013,9(5):1132–1136 [24] 林存刚,张忠苗,吴世明,等.软土地层盾构隧道施工引起的地面隆陷研究[J].岩石力学与工程学报,2011,30(12):2583–2592. Lin Cungang,Zhang Zhongmiao,Wu Shiming,et al.Study of ground heave and subsidence induced by shield tunnelling in soft ground[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(12):2583–2592 [25] Vesić A B.Bending of beams resting on isotropic elastic solid[J].Journal of the Engineering Mechanics Division,1961,87(2):35–53. doi: 10.1061/JMCEA3.0000212 [26] Tanahashi H.Formulas for an infinitely long Bernoulli-Euler beam on the Pasternak model[J].Soils and Foundations,2004,44(5):109–118. doi: 10.3208/sandf.44.5_109 [27] 魏纲.盾构隧道施工引起的土体损失率取值及分布研究[J].岩土工程学报,2010,32(9):1354–1361. Wei Gang.Selection and distribution of ground loss ratio induced by shield tunnel construction[J].Chinese Journal of Geotechnical Engineering,2010,32(9):1354–1361